

RIGID FAMILIES AND ENDOMORPHISM ALGEBRAS OF KRONECKER MODULES

BY

RÜDIGER GÖBEL*

*Fachbereich Mathematik und Informatik, Universität GH Essen
45117 Essen, Germany
e-mail: R.Goebel@Uni-Essen.De*

AND

DANIEL SIMSON**

*Faculty of Mathematics and Informatics, Nicholas Copernicus University
ul. Chopina 12/18, 87-100 Toruń, Poland
e-mail: simson@mat.uni.torun.pl*

ABSTRACT

Let R be a commutative ring with an identity element and let $\Gamma_2(R) = \begin{pmatrix} R & R^2 \\ 0 & R \end{pmatrix}$ be the the Kronecker R -algebra. One of our main results is Theorem 1.2 asserting that for any R -algebra A generated by λ elements, where λ is an infinite cardinal number, there exists a rigid direct system $\mathbb{F} = \{\mathbb{F}_\beta, f_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \lambda}$ (see Definition 2.8) of fully faithful R -linear exact functors $\mathbb{F}_\beta: \text{Mod}(A) \rightarrow \text{Mod}(\Gamma_2(R))$ connected by R -splitting functorial monomorphisms $f_{\beta\gamma}: \mathbb{F}_\beta \rightarrow \mathbb{F}_\gamma$ satisfying some extra conditions. In particular, if R is a field then every R -algebra generated by at most λ elements is isomorphic to an endomorphism algebra $\text{End } X$ of a Kronecker module $X = (X', X'', \varphi', \varphi'')$ in $\text{Mod}\Gamma_2(R)$ such that $\dim_R X' = \dim_R X'' = \lambda$, the R -linear maps $\varphi', \varphi'': X' \rightarrow X''$ are injective and $X'' = \text{Im } \varphi' + \text{Im } \varphi''$.

* Supported by a project of the German–Israeli Foundation for Scientific Research & Development GIF No. Go-0294-081.06193.

** Partially supported by Polish KBN Grant 2 P0 3A 007 12.

Received June 15, 1997

1. Introduction

Throughout this paper K is a field and R is a commutative ring with an identity element.

Following Corner [4] many authors have studied nice subcategories \mathcal{A} of a module category $\text{Mod}(\Lambda)$ over finitely generated R -algebras Λ for which there exist large objects in \mathcal{A} with prescribed endomorphism R -algebras and rigid direct systems of objects in \mathcal{A} (see [1], [2], [6], [8], [9], [10], [14], [15]). The existence problem reduces to a corresponding problem for the category $\text{Mod}(\Gamma_2(R))$ of Kronecker R -modules defined below, if there exists a full faithful and exact functor $T : \text{Mod}(\Gamma_2(R)) \rightarrow \mathcal{A}$. Fortunately, such a functorial embedding can be constructed for many interesting subcategories \mathcal{A} (see [11], [17], [18], [21]).

In the present paper we solve the existence problem in the affirmative for the category $\text{Mod}(\Gamma_2(R))$ of Kronecker R -modules (see Theorem 1.2 and Corollary 1.3). Our main result is successfully applied in [11], where among other things we get an alternative and short proof of Theorem 2 of [10].

We recall that a right module X over a generalized triangular matrix ring

$$S = \begin{pmatrix} A & {}_A M_B \\ 0 & B \end{pmatrix}$$

can be identified with the system

$$X = (X'_A, X''_B, \varphi),$$

where X'_A is a right A -module, X''_B is a right B -module and $\varphi : X' \otimes_A M_B \rightarrow X''_B$ is a B -homomorphism (see [16]). We recall from [19] that the S -module X is said to be **propartite** if X'_A is a projective A -module and X''_B is a projective B -module. We denote by $\text{Mod}_{\text{pr}}^{\text{pr}}(S)_B^A$ the category of propartite right S -modules, and by $\text{mod}_{\text{pr}}^{\text{pr}}(S)_B^A$ the full subcategory of $\text{Mod}_{\text{pr}}^{\text{pr}}(S)_B^A$ consisting of finitely generated modules.

For any ring A with an identity element, the generalized matrix A -algebra

$$(1.1) \quad \Gamma_2(A) = \begin{pmatrix} A & A^2 \\ 0 & A \end{pmatrix}$$

is called the **Kronecker A -algebra**, where the multiplication is defined naturally by the formula

$$\begin{pmatrix} d & u \\ 0 & c \end{pmatrix} \begin{pmatrix} f & v \\ 0 & e \end{pmatrix} = \begin{pmatrix} df & dv + ue \\ 0 & ce \end{pmatrix}.$$

The right $\Gamma_2(A)$ -modules are called **Kronecker A -modules**. Following the convention introduced above the category $\text{Mod}(\Gamma_2(A))$ of Kronecker A -modules

X can be identified with the category of A -representations of the Kronecker quiver (see [14] and [16])

$$\bullet \xrightarrow{\varphi'} \bullet$$

$$\varphi''$$

that is, the systems

$$X = (X', X'', \varphi', \varphi'')$$

where X' and X'' are A -modules and $\varphi', \varphi'': X' \rightarrow X''$ are A -homomorphisms. A morphism from $X = (X', X'', \varphi', \varphi'')$ to $X_1 = (X'_1, X''_1, \varphi'_1, \varphi''_1)$ is a pair (f', f'') of A -module homomorphisms $f': X' \rightarrow X'_1$, $f'': X'' \rightarrow X''_1$ such that $\varphi'_1 f' = f'' \varphi'$ and $\varphi''_1 f' = f'' \varphi''$.

The category $\text{Mod}_{\text{pr}}^{\text{pr}}(\Gamma_2(A))$ of propartite $\Gamma_2(A)$ -modules will be called the category of **A -projective Kronecker modules**. It is easy to see that $\text{Mod}_{\text{pr}}^{\text{pr}}(\Gamma_2(A))$ can be identified with the category of A -projective representations of the Kronecker quiver, that is, the A -representations $P = (P', P'', \varphi', \varphi'')$, where P' and P'' are projective A -modules.

The following theorem is the main result of this paper.

THEOREM 1.2: *Let R be a commutative ring with an identity element and let*

$$\Gamma_2(R) = \begin{pmatrix} R & R^2 \\ 0 & R \end{pmatrix}$$

be the Kronecker R -algebra (1.1).

(a) *For any R -algebra A generated by λ elements, where λ is an infinite cardinal number, there exists a direct system*

$$\mathbb{F} = \{\mathbb{F}_\beta, f_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \lambda}$$

of full faithful R -linear exact functors $\mathbb{F}_\beta: \text{Mod}(A) \rightarrow \text{Mod}(\Gamma_2(R))$ connected by injective functorial morphisms $f_{\beta\gamma}: \mathbb{F}_\beta \rightarrow \mathbb{F}_\gamma$ satisfying the following conditions:

(i) *For every A -free module M in $\text{Mod}(A)$, the Kronecker R -module $\mathbb{F}_\beta(M) = (M'_\beta, M''_\beta, \varphi'_\beta, \varphi''_\beta)$ is A -free for all $\beta \subseteq \lambda$, the free A -modules M'_β and M''_β are of rank λ , $\varphi'_\beta, \varphi''_\beta: M'_\beta \rightarrow M''_\beta$ are A -module monomorphisms such that $\text{Im } \varphi'_\beta + \text{Im } \varphi''_\beta = M''_\beta$ and the modules $M'_\beta / \text{Im } \varphi'$, $M''_\beta / \text{Im } \varphi''$ are A -free. In particular, if M is A -free, the Kronecker R -module $\mathbb{F}_\beta(M)$ lies in the category $\text{Mod}_{\text{pr}}^{\text{pr}}(\Gamma_2(A))$ and has no direct summands of the form $X = (X', X'', \varphi', \varphi'')$, where $X' = 0$ and X'' is a projective A -module.*

(ii) *For every module M in $\text{Mod}(A)$ and for all $\beta \subseteq \gamma \subseteq \lambda$ the $\Gamma_2(R)$ -homomorphism $f_{\beta\gamma}(M): \mathbb{F}_\beta(M) \rightarrow \mathbb{F}_\gamma(M)$ is an R -splittable monomorphism.*

(iii) If M and N are modules in $\text{Mod}(A)$ then

$$\text{Hom}_{\Gamma_2(R)}(\mathbb{F}_\beta(M), \mathbb{F}_\gamma(N)) = 0 \quad \text{if } \beta \not\subseteq \gamma,$$

and the natural R -homomorphism

$$\text{Hom}_A(M, N) \xrightarrow{\cong} \text{Hom}_{\Gamma_2(R)}(\mathbb{F}_\beta(M), \mathbb{F}_\gamma(N)), \quad g \mapsto f_{\beta\gamma}(N) \circ \mathbb{F}_\beta(g),$$

is an isomorphism for all $\beta \subseteq \gamma \subseteq \lambda$.

(b) Any R -algebra A is isomorphic to a $\Gamma_2(R)$ -endomorphism algebra of the form $\text{End } X$, where X is an A -free Kronecker A -module in $\text{Mod}(\Gamma_2(R))$.

An immediate consequence of Theorem 1.2 is the following generalization of a well-known result of Ringel [14, Corollary, p. 407].

COROLLARY 1.3: *Let K be an arbitrary field. Every K -algebra generated by at most λ elements, where λ is an infinite cardinal number, is isomorphic to an endomorphism algebra $\text{End } X$ of a Kronecker module $X = (X', X'', \varphi', \varphi'')$ in $\text{Mod} \begin{pmatrix} K & K^2 \\ 0 & K \end{pmatrix}$ such that $\dim_K X' = \dim_K X'' = \lambda$, the K -linear maps φ' and φ'' are injective and $X'' = \text{Im } \varphi' + \text{Im } \varphi''$.*

Note that in case R is a field K our Theorem 1.2 and Corollary 1.3 are close to the fact proved by Ringel [14, Corollary, p. 408] and asserting that every hereditary representation-infinite K -algebra Λ of finite dimension is “WILD” in the sense defined in [14, p. 408]. In particular, the result of Ringel [14, p. 408] provides us with a full and faithful embedding functor

$$\mathbb{F}: \text{Mod}(A) \longrightarrow \text{Mod} \begin{pmatrix} K & K^2 \\ 0 & K \end{pmatrix}$$

for any K -algebra A .

Let us remark that our Theorem 1.2 is more general than the result of Ringel, because it implies the existence of such an embedding \mathbb{F} satisfying in addition the conditions stated in (i) of Theorem 1.2. Moreover, it guarantees the existence of a rigid family of functors \mathbb{F}_λ satisfying the conditions (i)–(iii) of Theorem 1.2.

The organization of the paper is as follows. In Section 2 we collect basic definitions and facts on λ -families and rigid systems. We mainly follow the notations and terminology introduced in [9] and [10].

The proof of Theorem 1.2 is presented at the end of Section 3. It depends on several preparatory results proved in Section 3; the main ones are Theorem 3.3 and Proposition 3.5.

Theorem 1.2 is valid for any infinite cardinals λ ; however, for sake of clarity we restrict our consideration to regular cardinals. The passage to singular cardinals does not depend on the particular modules and is given in [9].

An application of Theorem 1.2 is given in Corollary 4.5. Some open problems are discussed in Section 4.

2. Generalities on λ -families and rigid systems

Assume that R is a commutative ring with an identity element and \mathcal{A} is a full subcategory of the category $\text{Mod}(\Lambda)$, where Λ is an R -algebra. Throughout we usually assume that the subcategory \mathcal{A} is closed under taking arbitrary direct sums and under taking extensions in $\text{Mod}(\Lambda)$.

A sequence $0 \rightarrow Y' \rightarrow X \rightarrow Y'' \rightarrow 0$ in \mathcal{A} is said to be exact in \mathcal{A} if it is an exact sequence in $\text{Mod}(\Lambda)$.

We start this section by recalling from [9] and [10] the definitions and basic facts on λ -families.

Let λ be an infinite cardinal number and let \mathcal{A} be an arbitrary full subcategory of the category $\text{Mod}(\Lambda)$, where Λ is an R -algebra. A **λ -family** in \mathcal{A} is the λ -directed system

$$(2.1) \quad \{U_\beta, u_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \lambda}$$

in \mathcal{A} , that is, U_β is an object in \mathcal{A} and $u_{\beta\gamma}: U_\beta \rightarrow U_\gamma$ is a Λ -homomorphism in \mathcal{A} for $\beta \subseteq \gamma$, such that $u_{\beta\beta}$ is the identity map on U_β , and if $\alpha \subseteq \beta \subseteq \gamma$ then $u_{\alpha\gamma} = u_{\beta\gamma} \circ u_{\alpha\beta}$.

We say that the λ -family $\{U_\beta, u_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \lambda}$ has the **R -mono-splitting property** (resp. **is R -free**) if for all $\beta \subseteq \gamma \subseteq \lambda$ the homomorphism $u_{\beta\gamma}: U_\beta \rightarrow U_\gamma$ is an R -splittable monomorphism (resp. $u_{\beta\gamma}$ is injective and the modules U_β , U_γ , $\text{Coker } u_{\beta\gamma}$ are R -free). If in addition the free R -modules U_β , U_γ , $\text{Coker } u_{\beta\gamma}$ are of rank λ , the λ -family is called **λ - R -free**.

A **weak λ -family** in \mathcal{A} is a λ -family $\{U_\beta, u_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \lambda}$ in \mathcal{A} such that for all $\beta \cup \gamma \subseteq \lambda$ the sequence

$$0 \longrightarrow U_{\beta \cap \gamma} \longrightarrow U_\beta \oplus U_\gamma \longrightarrow U_{\beta \cup \gamma} \longrightarrow 0$$

is exact, where the maps are the natural ones induced by $u_{\beta \cap \gamma, \beta}$, $u_{\beta \cap \gamma, \gamma}$, $u_{\beta, \beta \cup \gamma}$ and $u_{\gamma, \beta \cup \gamma}$.

If M and N are R -modules, we say that the weak λ -family $\{U_\beta, u_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \lambda}$ in \mathcal{A} is **rigid for the pair M, N** if the following conditions hold:

(W1) Direct sums of families for various $\alpha, \beta \subseteq \lambda$ of the induced homomorphism $N \otimes_R U_{\alpha \cap \beta} \rightarrow N \otimes_R (U_\alpha \oplus U_\beta)$ are semi-stable kernels (see [13]).

(W2) Any Λ -homomorphism $U_\alpha \rightarrow \bigoplus_{\beta \subseteq \lambda} (N \otimes_R U_\beta)$ factors through a finite direct sum.

(W3) If $\psi: U_\beta \rightarrow N \otimes_R U_\beta$ is a Λ -homomorphism such that the composed homomorphism $U_\emptyset \xrightarrow{u_{\emptyset\beta}} U_\beta \xrightarrow{\psi} N \otimes_R U_\beta$ is zero, then $\psi = 0$.

(W4) $\text{Hom}_\Lambda(M \otimes_R U_\beta, N \otimes_R U_\gamma) = \begin{cases} \text{Hom}_R(M, N) & \text{if } \beta = \gamma, \\ 0 & \text{if } \beta \setminus \gamma \text{ is infinite,} \end{cases}$
where the equality “=” means that the canonical R -homomorphism

$$(2.2) \quad \text{Hom}_R(M, N) \longrightarrow \text{Hom}_\Lambda(M \otimes_R H_\beta, N \otimes_R H_\gamma),$$

$f \mapsto f \otimes u_{\beta\gamma}$, is bijective. If the family is rigid for every pair M, N of R -modules, we call it a **rigid family**.

Remarks 2.3: (a) Note that according to the tensor product adjoint formula the condition **(W4)** holds for every R -module M if and only if **(W4)** holds for $M = R$.

(b) If we assume that the full subcategory \mathcal{A} of $\text{Mod}(\Lambda)$ is closed under taking arbitrary direct sums and under taking extensions in $\text{Mod}(\Lambda)$, then every weak λ -family $\{U_\beta, u_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \lambda}$ in \mathcal{A} has the property **(W1)**.

A **strong λ -family** in \mathcal{A} is a system $\{H_\beta, h_{\beta\gamma}, Q_i\}_{\beta \subseteq \gamma \subseteq \lambda, i \in \lambda}$, where $\{H_\beta, h_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \lambda}$ is a weak λ -family in \mathcal{A} , and $\{Q_i\}_{i \in \lambda}$ is a family of objects in \mathcal{A} together with homomorphisms $H_\beta \rightarrow \bigoplus_{i \in \beta} Q_i$ such that, whenever $\beta \subseteq \gamma$, there is a commutative diagram

$$\begin{array}{ccccccc} H_\emptyset & \longrightarrow & H_\beta & \longrightarrow & \bigoplus_{i \in \beta} Q_i & \longrightarrow & 0 \\ \downarrow id & & \downarrow h_{\beta\gamma} & & \downarrow & & \\ H_\emptyset & \longrightarrow & H_\gamma & \longrightarrow & \bigoplus_{i \in \gamma} Q_i & \longrightarrow & 0 \end{array}$$

in \mathcal{A} with exact rows, where the right-hand vertical map is the natural direct sum embedding.

It follows that the homomorphism $h_{\beta\gamma}$ is injective and there is an exact sequence

$$0 \longrightarrow H_\beta \xrightarrow{h_{\beta\gamma}} H_\gamma \longrightarrow \bigoplus_{i \in \gamma \setminus \beta} Q_i \longrightarrow 0$$

in \mathcal{A} for all $\beta \subseteq \gamma \subseteq \lambda$.

If M and N are R -modules, we say that the strong λ -family $\{H_\beta, h_{\beta\gamma}, Q_i\}_{\beta \subseteq \gamma \subseteq \lambda, i \in \lambda}$ in \mathcal{A} is **strongly rigid for the pair M, N** if the following holds:

(S1) The R -homomorphism $id_N \otimes h_{\beta\gamma}: N \otimes_R H_\beta \rightarrow N \otimes_R H_\gamma$ is injective for all $\beta \subseteq \gamma$.

(S2) The R -homomorphism

$$\Psi_{N,Q}: N \longrightarrow \text{Hom}_\Lambda(Q_i, N \otimes_R Q_i),$$

$n \mapsto (q \mapsto n \otimes q)$, is bijective for any $i \in \lambda$.

$$(S3) \quad \text{Hom}_\Lambda(M \otimes_R H_\beta, N \otimes_R H_\gamma) = \begin{cases} \text{Hom}_R(M, N) & \text{if } \beta \subseteq \gamma, \\ 0 & \text{if } \beta \not\subseteq \gamma, \end{cases}$$

where the equality “=” means that the canonical R -homomorphism

$$(2.4) \quad \text{Hom}_R(M, N) \longrightarrow \text{Hom}_\Lambda(M \otimes_R H_\beta, N \otimes_R H_\gamma),$$

$f \mapsto f \otimes h_{\beta\gamma}$, is bijective.

If the family $\{H_\beta, h_{\beta\gamma}, Q_i\}_{\beta \subseteq \gamma \subseteq \lambda, i \in \lambda}$ is strongly rigid for every pair M, N of R -modules, we call it a **strongly rigid family**.

Remark 2.5: According to the tensor product adjoint formula, the condition (S3) holds for every R -module M if and only if (S3) holds for $M = R$.

Throughout, we assume that R is a commutative ring with an identity element, Λ is an R -algebra and \mathcal{A} is a full subcategory of the category $\text{Mod}(\Lambda)$ being closed under taking arbitrary direct sums and under taking extensions in $\text{Mod}(\Lambda)$.

The following proposition provides us with a useful reduction tool.

PROPOSITION 2.6: Let λ be an infinite cardinal number. Assume that R, Λ and \mathcal{A} are as above.

(a) For any weak λ -family $\{U_\beta, u_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \lambda}$ in the category \mathcal{A} there exists a strong λ -family $\{H_\beta, h_{\beta\gamma}, Q_i\}_{\beta \subseteq \gamma \subseteq \lambda, i \in \lambda}$ in \mathcal{A} which is rigid for every pair of R -modules M and N for which the weak λ -family is rigid.

(b) If the λ -family $\{U_\beta, u_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \lambda}$ has the R -mono-splitting property (resp. is λ - R -free) then the new family $\{H_\beta, h_{\beta\gamma}, Q_i\}_{\beta \subseteq \gamma \subseteq \lambda, i \in \lambda}$ has the R -mono-splitting property (resp. is λ - R -free).

Proof: The statement (a) follows from [10, Proposition 1]. The statement (b) follows from the proof of [10, Proposition 1] and the arguments applied in the proof of [9, Proposition 2.3]. ■

Throughout, we denote by ω the minimal countable ordinal number. We shall prove in Section 3 that there exists a rigid ω -family of R -free Kronecker modules with some extra properties. From this we shall derive the existence of large rigid families of Kronecker modules by applying the so-called Shelah elevator to move

ω -families up to any infinite cardinal λ . This is based on a result by Shelah [15], which can be formulated in terms of R_ω -modules.

By an R_ω -module we shall mean a system $\mathbf{F} = (F; F^{(k)})_{k \in \omega}$, where F is an R -module and $\{F^{(k)} : k \in \omega\}$ is a countable family of distinguished R -submodules of F . A morphism $\psi : \mathbf{F} \rightarrow \mathbf{G}$ between R_ω -modules \mathbf{F} and $\mathbf{G} = (G; G^{(k)})_{k \in \omega}$ is an R -homomorphism $\psi : F \rightarrow G$ such that $\psi(F^{(k)}) \subseteq G^{(k)}$ for all $k \in \omega$.

Assume that λ is an infinite cardinal number. An R_ω -module \mathbf{F} is said to be λ - **R -free** if the R -modules F , $F^{(k)}$, $F/F^{(k)}$ are free of rank λ for any $k \in \omega$.

A strong λ -family $\{\mathbf{F}_\beta, f_{\beta\gamma}, \mathbf{Q}_i\}_{\beta \subseteq \gamma \subseteq \lambda, i \in \lambda}$ of R_ω -modules \mathbf{F}_β and \mathbf{Q}_i is said to be λ - **R -free** if the natural R -module embeddings $F_\beta^{(k)} \subseteq F_\beta$ and $Q_i^{(k)} \subseteq Q_i$ split and their complements are free R -modules of rank λ for all $\beta \subseteq \lambda$, $i \in \lambda$ and for all $k \in \omega$.

In [15] Shelah essentially has proved the important special case $R = \mathbb{Z}$ of the following non-trivial “Shelah elevator”.

THEOREM 2.7: *For any infinite cardinal number λ there exists a strongly rigid λ - R -free strong λ -family $\{\mathbf{G}_\beta, g_{\beta\gamma}, \mathbf{Q}_i\}_{\beta \subseteq \gamma \subseteq \lambda, i \in \lambda}$ of R_ω -modules.*

Proof: For the proof the reader is referred to [9] and [6, Section 3] (see also [15] for the proof in the case $R = \mathbb{Z}$). ■

Definition 2.8: Let λ be an infinite cardinal number and let A be an R -algebra. Following [10], by a λ -**family of functors** from $\text{Mod}(A)$ to \mathcal{A} we shall mean a direct system

$$\mathbf{F} = \{\mathbf{F}_\beta, f_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \lambda}$$

of R -linear additive functors $\mathbf{F}_\beta : \text{Mod}(A) \rightarrow \mathcal{A}$ connected by functorial morphisms $f_{\beta\gamma} : \mathbf{F}_\beta \rightarrow \mathbf{F}_\gamma$. The system \mathbf{F} is said to be **rigid** if for any pair of modules M and N in $\text{Mod}(A)$

$$\text{Hom}_A(\mathbf{F}_\beta(M), \mathbf{F}_\gamma(N)) = 0 \quad \text{if } \beta \not\subseteq \gamma,$$

and the natural R -homomorphism

$$(2.9) \quad \text{Hom}_A(M, N) \xrightarrow{\simeq} \text{Hom}_A(\mathbf{F}_\beta(M), \mathbf{F}_\gamma(N)),$$

$g \mapsto f_{\beta\gamma}(N) \circ \mathbf{F}_\beta(g)$, is an isomorphism for all $\beta \subseteq \gamma \subseteq \lambda$. We say that the system has the **R -mono-splitting property** if for any module M in $\text{Mod}(A)$ and for all $\beta \subseteq \gamma \subseteq \lambda$ the R -homomorphism $f_{\beta\gamma}(M) : \mathbf{F}_\beta(M) \rightarrow \mathbf{F}_\gamma(M)$ is an R -splittable monomorphism.

By applying Proposition 2.6, Theorem 2.7 and a method of Corner [4] the following important reduction result is proved in [10].

PROPOSITION 2.10: *Assume that R is a commutative ring with an identity element, \mathcal{A} is a full subcategory of the category $\text{Mod}(\Lambda)$, where Λ is an R -algebra, and \mathcal{A} is closed under taking arbitrary direct sums and under taking extensions in $\text{Mod}(\Lambda)$.*

(a) *If a weak ω -family $\{U_\beta, u_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \omega}$ in \mathcal{A} is given, then for any infinite ordinal number λ there exists a strong λ -family*

$$\{H_\beta, h_{\beta\gamma}, Q_i\}_{\beta \subseteq \gamma \subseteq \lambda, i \in \lambda}$$

in \mathcal{A} , which is strongly rigid for every pair of R -modules M and N for which the weak ω -family $\{U_\beta, u_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \omega}$ is strongly rigid.

Moreover, if the given ω -family $\{U_\beta, u_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \omega}$ has the R -mono-splitting property (resp. is ω - R -free), then the new family $\{H_\beta, h_{\beta\gamma}, Q_i\}_{\beta \subseteq \gamma \subseteq \lambda, i \in \lambda}$ has the R -mono-splitting property (resp. is λ - R -free).

(b) *For any infinite cardinal number λ , for any R -algebra A generated by λ elements and for any strong λ -family $\{H_\beta, h_{\beta\gamma}, Q_i\}_{\beta \subseteq \gamma \subseteq \lambda, i \in \lambda}$ in \mathcal{A} , there exists a λ -family $\mathbb{F} = \{\mathbb{F}_\beta, f_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \lambda}$ of R -linear additive functors $\mathbb{F}_\beta : \text{Mod}(A) \rightarrow \mathcal{A}$, which is rigid for every pair of A -modules M and N for which the strong λ -family $\{H_\beta, h_{\beta\gamma}, Q_i\}_{\beta \subseteq \gamma \subseteq \lambda, i \in \lambda}$ is strongly rigid.*

Moreover, if the given λ -family $\{H_\beta, h_{\beta\gamma}, Q_i\}_{\beta \subseteq \gamma \subseteq \lambda, i \in \lambda}$ has the R -mono-splitting property (resp. is λ - R -free), then the new family $\mathbb{F} = \{\mathbb{F}_\beta, f_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \lambda}$ has the R -mono-splitting property (resp. is λ - R -free).

3. Rigid families of Kronecker modules

Let R be a commutative ring with an identity element and let A be an R -algebra. We recall from Section 1 that

$$\Gamma_2(A) = \begin{pmatrix} A & A^2 \\ 0 & A \end{pmatrix}$$

is the Kronecker A -algebra and $\text{Mod}_{pr}^{pr}(\Gamma_2(A))$ is the category of all A -projective Kronecker modules. Any such module P is identified with the system

$$(3.1) \quad P = (P', P''; \varphi', \varphi''),$$

where P' and P'' are projective A -modules and $\varphi', \varphi'': P' \rightarrow P''$ are A -homomorphisms.

We will frequently deal with a special kind of R -projective Kronecker module defined as follows.

Fix an infinite cardinal number λ . The Kronecker A -module P will be called **splittable free of rank** (λ, λ) if P' and P'' are free A -modules of rank λ , the A -homomorphisms $\varphi', \varphi'' : P' \rightarrow P''$ are splittable monomorphisms and the A -modules $P''/\text{Im } \varphi'$ and $P''/\text{Im } \varphi''$ are free. We denote by

$$(3.2) \quad \mathcal{SFKr}(A, \lambda)$$

the full subcategory of $\text{Mod}_{pr}^{pr}(\Gamma_2(A))$ formed by splittable free Kronecker A -modules $P = (P', P''; \varphi', \varphi'')$ of rank (λ, λ) such that $P'' = \text{Im } \varphi' + \text{Im } \varphi''$.

The main result of this section is the following.

THEOREM 3.3: *Let R be a commutative ring, λ an infinite cardinal number and A an R -algebra which is generated by λ elements. Then there exists a direct system $\{H_\beta, h_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \lambda}$ in the category $\text{Mod}(\Gamma_2(A))$ of Kronecker A -modules with the following properties:*

- (a) *Each H_β is in the category $\mathcal{SFKr}(A, \lambda)$ and each $h_{\beta\gamma}$ is an A -module homomorphism.*
- (b) *The family $\{H_\beta, h_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \lambda}$ is λ - A -free.*
- (c) *For any pair of A -modules M and N we have*

$$\text{Hom}_{\Gamma_2(R)}(M \otimes_A H_\beta, N \otimes_A H_\gamma) = \begin{cases} \text{Hom}_A(M, N) & \text{if } \beta \subseteq \gamma, \\ 0 & \text{if } \beta \not\subseteq \gamma, \end{cases}$$

where the equality “=” means that the canonical R -homomorphism

$$\text{Hom}_R(M, N) \longrightarrow \text{Hom}_{\Gamma_2(R)}(M \otimes_A H_\beta, N \otimes_A H_\gamma),$$

$f \mapsto f \otimes h_{\beta\gamma}$, is bijective. In other words $\{H_\beta, h_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \lambda}$ is a fully rigid system in the sense of Corner [5].

The proof is presented at the end of this section. We precede it by two preparatory important propositions.

By a slight modification of the proof of Proposition 2.3 in [9] we get the following result reducing the problem about the existence of rigid families to the existence of weak rigid families.

PROPOSITION 3.4: *If there exists a rigid weak λ -family of Kronecker R -modules in the category $\mathcal{SFKr}(R, \lambda)$ with the R -mono-splitting property (resp. λ - R -free), then there exists a strongly rigid strong λ -family of Kronecker R -modules in $\mathcal{SFKr}(R, \lambda)$ with the R -mono-splitting property (resp. λ - R -free).*

A crucial part of the proof of Theorems 3.3 and 1.2 is the following result which is a variation of a theorem of Baer (see Fuchs [7, Vol.2]) blended with an idea of Ringel (see the proof of Theorem 6.9 in [14]).

PROPOSITION 3.5: (a) *There exist a rigid weak ω -family $\{F_\beta, u_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \omega}$ Kronecker R -module*

$$F_\beta = (F'_\beta, F''_\beta; \varphi'_\beta, \varphi''_\beta : F'_\beta \rightarrow F''_\beta)$$

of rank (ω, ω) , and elements $e_\beta \in F''_\beta$ satisfying the following conditions:

(i) the module F_β belongs to $\mathcal{SFKr}(R, \omega)$ for every $\beta \subseteq \omega$;

(ii) for all $\beta \subseteq \gamma \subseteq \omega$ the homomorphism $u_{\beta\gamma} : F_\beta \rightarrow F_\gamma$ is an R -splittable monomorphism and there is a Kronecker module isomorphism

$$(3.5a) \quad F_\gamma / \text{Im } u_{\beta\gamma} \cong \bigoplus_{i \in \gamma \setminus \beta} \mathbf{R}(p_i(x))$$

where

$$(3.5b) \quad \mathbf{R}(p_i(x)) = (R[x]/(p_i(x)), R[x]/(p_i(x)), \psi'_i, \psi''_i),$$

ψ'_i is the identity map on $R[x]/(p_i(x))$ and $\psi''_i : R[x]/(p_i(x)) \rightarrow R[x]/(p_i(x))$ is induced by the scalar multiplication by x ;

(iii) $F''_\beta = \text{Im } \varphi'_\beta + \text{Im } \varphi''_\beta$, $\text{Im } \varphi'_\beta \oplus \text{Re}_\beta = F''_\beta$, $\text{Im } \varphi''_\beta \oplus \text{Re}_\beta = F''_\beta$ and $u_{\beta\gamma}(e_\beta) = e_\gamma$ for all $\beta \subseteq \gamma \subseteq \omega$.

(b) *There exists a strong ω -family of splittable R -free Kronecker R -modules of rank (ω, ω) (that is, objects in $\mathcal{SFKr}(R, \omega)$), which is strongly rigid and ω - R -free.*

Proof: The statement (b) of the proposition follows from (a) and Proposition 3.4. The proof of (a) is divided into four steps.

STEP 1: We define a multiplicative subset $S \subset R[x]$ and $R[x]$ -submodules L_β , $\beta \subseteq \omega$, of the localization $S^{-1}R[x]$ of $R[x]$ with respect to S with the following properties:

(a1) L_β is an S -torsion-free $R[x]$ -submodule of rank 1 of $S^{-1}R[x]$ for any $\beta \subseteq \omega$.

(a2) If $\beta \subseteq \gamma \subseteq \omega$ then $L_\beta \subseteq L_\gamma$.

(a3) If N is an R -module and $\beta \cup \gamma \subseteq \omega$, then

$$\text{Hom}_{R[x]}(L_\beta, N \otimes_R L_\gamma) = \begin{cases} N, & \text{if } \beta = \gamma, \\ 0, & \text{if } \beta \setminus \gamma \text{ is infinite,} \end{cases}$$

where $\text{Hom}_{R[x]}(L_\beta, N \otimes_R L_\gamma) = N$ means that the R -homomorphism

$$\Psi_{N,L}: N \longrightarrow \text{Hom}_{R[x]}(L_\beta, N \otimes_R L_\gamma),$$

$n \mapsto (\ell \mapsto n \otimes \ell)$, is bijective.

For this purpose we define inductively the countable set of polynomials

$$p_0, p_1, p_2, \dots, p_n, \dots \in R[x]$$

by setting $p_0 = x + 1$ and $p_{i+1} = 1 + x \cdot p_0 p_1 \cdots p_i$. Observe that

(i) $p_i(0) = 1$ for all $i \in \mathbb{N}$, and

(ii) the polynomials p_i , $i \in \mathbb{N}$, are pairwise comaximal, that is, for any $i \neq j$ there exist $q_i, q_j \in R[x]$ with $1 = p_i q_i + p_j q_j$.

We take for S the multiplicative closure in $R[x]$ of the set $\{p_0, p_1, p_2, \dots\}$. It follows that S has no zero divisors in $R[x]$, and $R[x]$ becomes a subring of the localization $S^{-1}R[x]$. As in [9], for any $\beta \subseteq \omega$ we define L_β to be the $R[x]$ -submodule

$$L_\beta = \left\{ \frac{f}{p_{i_0} \cdots p_{i_k}}, \quad f \in R[x], \text{ all } i_0, \dots, i_k \text{ are distinct in } \beta \right\} \subseteq S^{-1}R[x]$$

of $S^{-1}R[x]$. The properties **(a1)** and **(a2)** easily follow from the definition.

Note also that if $i \in \beta$, then $p_i L_\beta = R[x] \oplus F'_{\beta \setminus \{i\}}$, and if $i \in \omega \setminus \beta$, then $p_i L_\beta = p_i R[x] \oplus F'_\beta$. It follows that in any case $p_i L_\beta$ has a free R -module complement in L_β and the module $N \otimes_R L_\beta$ is S -torsion-free for any R -module N . Then the property **(a3)** follows by applying the rank 1 considerations as in Baer's theorem in Fuchs [7, Vol.2, pp. 110 and 124] (see also [9, Lemma 3.1]).

STEP 2: For any $\beta \subseteq \omega$ we define an R -free Kronecker module

$$(3.6) \quad F_\beta = (F'_\beta, F''_\beta; \varphi'_\beta, \varphi''_\beta: F'_\beta \rightarrow F''_\beta)$$

in $\mathcal{SFKr}(R, \omega)$, where F'_β and F''_β are R -submodules of L_β defined as follows. Let d_i be the degree of p_i . We set

$$F_i^{(0)} = \sum_{j=0}^{d_i-1} R \frac{x^j}{p_i} = \bigoplus_{j=0}^{d_i-1} R \frac{x^j}{p_i} \subseteq S^{-1}R[x],$$

and if $\beta \subseteq \omega$, we define F'_β to be the R -submodule

$$F'_\beta = \sum_{i \in \beta} F_i^{(0)} = \bigoplus_{i \in \beta} F_i^{(0)}$$

of $S^{-1}R[x]$. Since $F_i^{(0)}$ is the p_i -primary component of F'_β and $p_i \neq p_j$ for $i \neq j$, then the primary decomposition theorem yields $F'_\beta = \bigoplus_{i \in \beta} F_i^{(0)}$ and $L_\beta = F'_\beta \oplus R[x]$ is an R -module decomposition by the partial fraction argument based on the property (ii) above (see [9, p. 35]).

Now we define F''_β to be the R -submodule

$$F''_\beta = F'_\beta + R1 \subseteq S^{-1}R[x]$$

of $S^{-1}R[x]$. Observe that $F'_\beta \cdot x \subseteq F''_\beta$, $F''_\beta = F'_\beta \oplus R1$ and $R1 = F''_\beta \cap R[x]$. Finally, we define two R -monomorphisms

$$\varphi'_\beta, \varphi''_\beta: F'_\beta \longrightarrow F''_\beta$$

where φ'_β is the natural embedding $F'_\beta \hookrightarrow F''_\beta$, and φ''_β is defined by the formula $\varphi''_\beta(f) = f \cdot x$, that is, φ''_β is the scalar multiplication by x .

The Kronecker R -modules $F_\beta = (F'_\beta, F''_\beta; \varphi'_\beta, \varphi''_\beta)$, $\beta \subseteq \omega$, (3.6) have the following properties:

(a4) If $\beta \subseteq \omega$ is infinite, then F_β is in $\mathcal{SFKr}(R, \omega)$, and there are R -module decompositions

$$(3.7) \quad F''_\beta = F'_\beta \oplus R1 \subseteq S^{-1}R[x], \quad F''_\beta = (\text{Im } \varphi''_\beta) \oplus R1 \subseteq S^{-1}R[x], \\ \text{Im } \varphi'_\beta + \text{Im } \varphi''_\beta = F''_\beta.$$

(a5) For any $\beta, \gamma \subseteq \omega$ the sequence

$$0 \longrightarrow F_{\beta \cap \gamma} \longrightarrow F_\beta \oplus F_\gamma \longrightarrow F_{\beta \cup \gamma} \longrightarrow 0$$

is exact, where the maps are the natural ones induced by $u_{\beta \cap \gamma, \beta}$, $u_{\beta \cap \gamma, \gamma}$, $u_{\beta, \beta \cup \gamma}$ and $u_{\gamma, \beta \cup \gamma}$.

The property **(a5)** follows easily from the definition of the modules F_β and the maps $u_{\gamma, \beta}$.

Now we shall prove **(a4)**. Since the decomposition $F''_\beta = F'_\beta \oplus R1$ is obvious it remains to show that $\text{Im } \varphi''_\beta$ has the R -free complement $1R$ in F''_β .

To see this we consider $g \in F_i^{(0)}x \cap 1R$. Then there exists a polynomial $f(x) \in R[x]$ such that $f(0) = 0$ and $g(x) = f(x)/p_i(x)$. Hence $f(x) = g(x)p_i(x)$. Since $0 = f(0) = g(0)p_i(0)$, $g \in R$ and $p_i(0) = 1$ by the choice of p_i then $g = g(0) = 0$. It follows $\text{Im } \varphi''_\beta$ has a free complement $1R$ in F''_β . The R -ranks of the free modules can be computed easily. The remaining equality in (3.7) follows from the easy observation that $R1 \subseteq F'_\beta + F'_\beta x$.

STEP 3: We define the element $e_\beta \in F''_\beta$ to be the element $1 \in F'_\beta$. Since $\text{Im } \varphi'_\beta = F'_\beta$, then (3.7) yields $\text{Im } \varphi'_\beta \oplus Re_\beta = F''_\beta$ and $\text{Im } \varphi''_\beta \oplus Re_\beta = F''_\beta$ for all $\beta \subseteq \omega$.

If $\beta \subseteq \gamma \subseteq \omega$, then the embedding $L_\beta \subseteq L_\gamma$ induces the R -module embeddings $u'_{\beta\gamma} : F'_\beta \subseteq F'_\gamma$ and $u''_{\beta\gamma} : F''_\beta \subseteq F''_\gamma$ such that

$$(3.8) \quad u_{\beta\gamma} = (u'_{\beta\gamma}, u''_{\beta\gamma}) : F_\beta \longrightarrow F_\gamma$$

is an embedding of Kronecker modules in $\mathcal{SKr}(R, \omega)$.

It follows from the definition that $u_{\beta\gamma}(e_\beta) = e_\gamma$ for all $\beta \subseteq \gamma \subseteq \omega$. Hence we easily conclude that there is a Kronecker R -module isomorphism

$$(3.8a) \quad F_\gamma / \text{Im } u_{\beta\gamma} \cong \bigoplus_{i \in \gamma \setminus \beta} (\bar{F}'_{\gamma,i}, \bar{F}''_{\gamma,i}, \xi'_{\gamma,i}, \xi''_{\gamma,i})$$

where $\bar{F}'_{\gamma,i} = \bar{F}''_{\gamma,i} = F_i^{(0)}$, $\xi'_{\gamma,i}$ is the identity map and $\xi''_{\gamma,i} : F_i^{(0)} \rightarrow F_i^{(0)}$ is induced by the scalar multiplication by x . It is easy to see that for every i there is a Kronecker R -module isomorphism

$$(\bar{F}'_{\gamma,i}, \bar{F}''_{\gamma,i}, \xi'_{\gamma,i}, \xi''_{\gamma,i}) \cong \mathbf{R}(g_i(x)).$$

STEP 4: Now we shall construct a rigid weak ω -family $\{F_\beta, u_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \omega}$ of Kronecker R -modules in the category $\mathcal{SKr}(R, \omega)$.

For this purpose choose any infinite subset β_0 of ω such that $\omega \setminus \beta$ is also infinite. It follows from (a4) that the family F_β , $\beta_0 \subseteq \beta \subseteq \omega$, constructed in Step 2 is in $\mathcal{SKr}(R, \omega)$. We take for $u_{\beta\gamma}$ the Kronecker R -module embeddings (3.8).

If we relabel $\omega \setminus \beta_0$ by ω , then we get an ω -family $\{F_\beta, u_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \omega}$ of some of the original Kronecker R -modules F_β . We shall show that $\{F_\beta, u_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \omega}$ has the required properties.

By (a4) and (a5), $\{F_\beta, u_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \omega}$ is a weak ω -family in $\mathcal{SKr}(R, \omega)$.

In the proof that $\{F_\beta, u_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \omega}$ has the properties (W1)–(W3) (see Section 2) we shall apply the following property:

(a6) If $f = (f', f'') : F_\beta \longrightarrow N \otimes_R F_\gamma$ is a homomorphism of Kronecker R -modules, then there exists an $R[x]$ -homomorphism $\tilde{f}'' : L_\beta \rightarrow N \otimes_R L_\gamma$ such that the diagram

$$\begin{array}{ccc} F''_\beta & \xrightarrow{u_\beta} & L_\beta \\ \downarrow f'' & & \downarrow \tilde{f}'' \\ N \otimes_R F''_\gamma & \xrightarrow{id_N \otimes u_\gamma} & N \otimes_R L_\gamma \end{array}$$

is commutative, where u_β is the natural embedding $F''_\beta = F'_\beta \oplus R1 \subseteq F'_\beta \oplus R[x] = L_\beta$.

In order to define \tilde{f}'' we recall that

$$f' \in \text{Hom}_R(F'_\beta, N \otimes_R F'_\gamma), \quad f'' \in \text{Hom}_R(F''_\beta, N \otimes_R F''_\gamma)$$

are such that

$$(*) \quad (id_N \otimes \varphi'_\gamma)f' = f''\varphi'_\beta \quad \text{and} \quad (id_N \otimes \varphi''_\gamma)f' = f''\varphi''_\beta.$$

We shall identify the Kronecker R -module $N \otimes_R F_\gamma$ with the system

$$(N \otimes_R F'_\gamma, N \otimes_R F''_\gamma, id_N \otimes \varphi'_\gamma, id_N \otimes \varphi''_\gamma),$$

where $id_N \otimes \varphi'_\gamma$ is the natural embedding and $id_N \otimes \varphi''_\gamma$ is the scalar multiplication by x .

We define $\tilde{f}'' : L_\beta \rightarrow N \otimes_R L_\gamma$ as follows. If ℓ is an element of L_β and $\ell = \ell' + h(x)$, $\ell' \in F'_\beta$, $h(x) \in R[x]$, we set

$$(3.9) \quad \tilde{f}'' = (id_N \otimes u_\gamma)(f''(\ell')) + [(id_N \otimes u_\gamma)f''(1_R)] \cdot h(x).$$

It is clear that \tilde{f}'' is an R -homomorphism and the diagram above is commutative.

We shall show that \tilde{f}'' is an $R[x]$ -homomorphism. For this purpose we note that $\tilde{f}''(m) = (id_N \otimes u_\gamma)f''(m)$ for all $m \in F''_\beta$. Hence, in view of $(*)$, we get

$$\begin{aligned} f''(\ell' \cdot x) &= f''\varphi''_\beta(\ell') \\ &= (id_N \otimes \varphi''_\gamma)f'(\ell') \\ &= [(id_N \otimes \varphi'_\gamma)f'(\ell')] \cdot x \\ &= [f''\varphi'_\beta(\ell')] \cdot x \\ &= [f''(\ell')] \cdot x \end{aligned}$$

for any $\ell' \in F'_\beta$. It follows that

$$\begin{aligned} \tilde{f}''(\ell' \cdot x) &= (id_N \otimes u_\gamma)f''(\ell' \cdot x) \\ &= (id_N \otimes u_\gamma)(f''(\ell') \cdot x) \\ &= [(id_N \otimes u_\gamma)f''(\ell')] \cdot x \\ &= [\tilde{f}''(\ell')] \cdot x \end{aligned}$$

for any $\ell' \in F'_\beta$, and therefore \tilde{f}'' is an $R[x]$ -homomorphism.

Now we shall prove that $\{F_\beta, u_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \omega}$ has the properties **(W1)**–**(W3)** (see Section 2).

For **(W1)** we apply Remark 2.3 (b). It follows from the tensor product adjoint formula that in order to prove the condition **(W4)** for any pair of R -modules M and N , it is enough to prove it for $M = R$ and for any N .

Assume that $f = (f', f'') : F_\beta \rightarrow N \otimes_R F_\gamma$ is a homomorphism of Kronecker R -modules. If $\beta \setminus \gamma$ is infinite, then by applying **(a3)** we get $\tilde{f}'' = 0$; hence $f'' = 0$ and $f = 0$ as well. Then the bottom equality in **(W4)** follows.

In order to prove the top equality in **(W4)** assume that $\beta = \gamma$. It is easy to see that the following diagram is commutative:

$$\begin{array}{ccc} N & \xrightarrow{\Psi_{N,F}} & \text{Hom}_{\Gamma_2(R)}(F_\beta, N \otimes_R F_\gamma) \\ \downarrow id_N & & \downarrow \Theta \\ N & \xrightarrow{\Psi_{N,L}} & \text{Hom}_{R[x]}(L_\beta, N \otimes_R L_\gamma) \end{array}$$

where $\Psi_{N,L}$ is defined in **(a3)**, $\Psi_{N,F}$ is defined analogously and, given a homomorphism $f = (f', f'') : F_\beta \rightarrow N \otimes_R F_\gamma$ of Kronecker R -modules, we take for $\Theta(f)$ the $R[x]$ -homomorphism \tilde{f}'' defined by the formula (3.9).

It is clear that Θ is an injective R -homomorphism. Since, according to **(a3)**, the map $\Psi_{N,L}$ is bijective, then $\Psi_{N,F}$ is bijective and **(W4)** follows.

In order to prove **(W2)** assume that $g = (g', g'') : F_\beta \rightarrow \bigoplus_{\gamma \in \Gamma} N \otimes_R F_\gamma$ is a homomorphism of Kronecker R -modules, where Γ is an arbitrary set. It follows from **(a6)** that the R -homomorphism g'' extends to an $R[x]$ -homomorphism \tilde{g}'' making the following diagram

$$\begin{array}{ccc} F_\beta'' & \xrightarrow{u_\beta} & L_\beta \\ \downarrow g'' & & \downarrow \tilde{g}'' \\ \bigoplus_{\gamma \in \Gamma} N \otimes_R F_\gamma'' & \xrightarrow{\bigoplus_{\gamma \in \Gamma} id_N \otimes u_\gamma} & \bigoplus_{\gamma \in \Gamma} N \otimes_R L_\gamma \end{array}$$

commutative. Since L_β is of a “rank-one type” $R[x]$ -module, then the $R[x]$ -homomorphism \tilde{g}'' factors through a finite direct sum $\bigoplus_{\gamma \in \Gamma_0} N \otimes_R L_\gamma$ containing the element $\tilde{f}''(1)$. It follows that g'' factors through a finite direct sum $\bigoplus_{\gamma \in \Gamma_0} N \otimes_R F_\gamma''$. Hence **(W2)** easily follows, because $\varphi'_\beta : F_\beta' \rightarrow F_\beta''$ is the natural embedding.

The property **(W3)** follows in a similar way by applying the definition of the Kronecker modules F_β and the choice of β_0 .

Consequently, the ω -family $\{F_\beta, u_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \omega}$ of Kronecker R -modules in the category $\mathcal{SKR}(R, \omega)$ is a rigid weak ω -family satisfying the required conditions (i)–(iii).

This finishes the proof of the statement (a) and of the proposition. \blacksquare

Proof of Theorem 3.3: Let λ be an infinite cardinal number and let A be an R -algebra which is generated by the set $\{a_i\}_{i \in \lambda}$. It follows from Theorem 2.7 that there exists a strongly rigid λ - R -free strong λ -family of R_ω -modules.

Let $\{\mathbf{G}_\beta, g_{\beta\gamma}, \mathbf{Q}_i\}_{\beta \subseteq \gamma \subseteq \lambda, i \in \lambda}$ be such a family and let

$$\mathbf{G}_\beta = \{G_\beta; G_\beta^{(k)}\}_{k \in \omega}$$

for $\beta \subseteq \lambda$. Following Brenner and Butler [3] (see also Corner [4, p. 162]) we shall modify the family in two steps as follows.

STEP 1: Since any \mathbf{G}_β is λ - R -free, then we can choose a free basis $\{g_i, g'_i, i \in \lambda\}$ for G_\emptyset . Define

$$A'_i = \{a \otimes g_i + a_i a \otimes g'_i, a \in A\} \subseteq A \otimes_R G_\emptyset \subseteq A \otimes_R G_\beta$$

which is isomorphic to A_R . If $A^* = \sum_{i \in \lambda} A'_i \subseteq A \otimes_R G_\beta$, then $A^* = \bigoplus_{i \in \lambda} A'_i \cong \bigoplus_{i \in \lambda} A$ has A -free complement $\bigoplus_{i \in \lambda} A \otimes g_i \cong \bigoplus_{i \in \lambda} A$ in $A \otimes_R G_\emptyset$ (hence has A -free complement in $A \otimes_R G_\beta$). Moreover, we have (see [9, p. 39, Lemma 4.1])

$$(*) \quad \{\Phi \in \text{Hom}(A \otimes_R \mathbf{G}_\beta, A \otimes_R \mathbf{G}_\beta), \Phi(A^*) \subseteq A^*\} = A(id_A \otimes g_{\beta\beta}).$$

STEP 2: We shall modify the given rigid λ -family of R_ω -modules and obtain another one which we will also denote by $\{\mathbf{G}_\beta, g_{\beta\gamma}, \mathbf{Q}_i\}_{\beta \subseteq \gamma \subseteq \lambda, i \in \lambda}$.

First we shift the indices $k \in \omega$ by $k \mapsto k + 2$ and we derive the R_ω -modules $\mathbf{G}_\beta = (G_\beta; G_\beta^{(k)})_{2 \leq k \leq \omega}$ for $\beta \subseteq \lambda$. Recall from Section 2 that for any $\beta \subseteq \lambda$ there is an exact sequence

$$0 \longrightarrow \mathbf{G}_\emptyset \longrightarrow \mathbf{G}_\beta \longrightarrow \bigoplus_{i \in \beta} \mathbf{Q}_i \longrightarrow 0.$$

Next we add two distinguished λ -free submodules G_β^0, G_β^1 to \mathbf{G}_β and Q_i^0, Q_i^1 to \mathbf{Q}_i , respectively, and the resulting new family $\{\mathbf{G}_\beta, g_{\beta\gamma}, \mathbf{Q}_i\}_{\beta \subseteq \gamma \subseteq \lambda, i \in \lambda}$ will be the desired one. Let $G_\beta^0 = \bigoplus_{i \in \lambda} R(g_i + g'_i)$, $G_\beta^1 = G_\beta$ and $Q_i^0 = 0$, $Q_i^1 = Q_i$. It is easy to check that the new family satisfies the required conditions.

STEP 3: Now we use the new λ -family $\{\mathbf{G}_\beta, g_{\beta\gamma}, \mathbf{Q}_i\}_{\beta \subseteq \gamma \subseteq \lambda, i \in \lambda}$ of R_ω -modules and a given rigid ω -family of Kronecker R -modules (given in Proposition 3.5) to produce a λ - A -free direct system $\{H_\beta, h_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \lambda}$ of Kronecker A -modules in $\mathcal{SKr}(A, \lambda)$.

It follows from Proposition 3.5 that there exists a strongly rigid ω - R -free ω -family of Kronecker R -modules in $\mathcal{SKr}(R, \omega)$ satisfying the conditions in Proposition 3.5.

Let $\{F_\beta, f_{\beta\gamma}, Q'_i\}_{\beta \subseteq \gamma \subseteq \omega, i \in \omega}$ be such a family, where

$$F_\beta = (F'_\beta, F''_\beta; \varphi'_\beta, \varphi''_\beta: F'_\beta \rightarrow F''_\beta).$$

For $k \in \mathbb{N}$ we put $F_k = F_{\{k\}}$. Then $f_{\beta\gamma} = (f'_{\beta\gamma}, f''_{\beta\gamma}): F_\beta \rightarrow F_\gamma$ is an R -splittable monomorphism for all $\beta \subseteq \gamma \subseteq \omega$.

Let $\{\mathbf{G}_\beta, g_{\beta\gamma}, \mathbf{Q}_i\}_{\beta \subseteq \gamma \subseteq \lambda, i \in \lambda}$ be the new λ -family above and

$$\mathbf{G}_\beta = (G_\beta, G_\beta^{(k)})_{k \in \omega}, \quad \text{where } G_\beta^{(k)} \subseteq G_\beta.$$

We can construct a new family in such a way that the modules $G_\beta^{(k)} \subseteq G_\beta$ have free basis elements chosen like in the proof of Proposition 3.4 of [9, p. 37].

Since \mathbf{G}_β is λ - R -free, then the map $\text{id}_A \otimes v_{\beta, k}: A \otimes_R G_\beta^{(k)} \rightarrow A \otimes_R G_\beta$ induced by the natural injection $v_{\beta, k}: G_\beta^{(k)} \hookrightarrow G_\beta$ is injective and A -splittable.

Moreover, the modules $A \otimes_R G_\beta^{(k)}$, $A \otimes_R G_\beta$ and the complement of $\text{Im}(\text{id}_A \otimes v_{\beta, k})$ in $A \otimes_R G_\beta$ are A -free of rank λ .

Since $f_{k\omega} = (f'_{k\omega}, f''_{k\omega}): F_k \rightarrow F_\omega$ is an R -splittable monomorphism for any $k \in \omega$, then the map

$$\text{id}_A \otimes v_{\beta, k} \otimes f_{k\omega}: A \otimes_R G_\beta^{(k)} \otimes_R F_k \longrightarrow A \otimes_R G_\beta \otimes_R F_\omega$$

induced by the monomorphisms $v_{\beta, k}: G_\beta^{(k)} \hookrightarrow G_\beta$ and $f_{k\omega}$ is injective for any $k \in \omega$ and any $\beta \subseteq \lambda$.

We define the Kronecker A -module $A \otimes_R G_\lambda \otimes_R F_\omega$ to be the Kronecker R -module F_ω tensored with the free A -module $A \otimes_R G_\lambda$ of rank λ . For any $\beta \subseteq \lambda$ we set

$$H_\beta = \sum_{k \in \omega} \text{Im}(\text{id}_A \otimes v_{\beta, k} \otimes_R f_{k\omega}) \subseteq A \otimes_R G_\beta \otimes_R F_\omega.$$

More explicitly, we have

$$H_\beta = (H'_\beta, H''_\beta; \psi'_\beta, \psi''_\beta: H'_\beta \rightarrow H''_\beta)$$

where

$$\begin{aligned} H'_\beta &= \sum_{k \in \omega} \text{Im}(id_A \otimes v_{\beta,k} \otimes_R f'_{k\omega}) \subseteq A \otimes_R G_\beta \otimes_R F'_\omega, \\ H''_\beta &= \sum_{k \in \omega} \text{Im}(id_A \otimes v_{\beta,k} \otimes_R f''_{k\omega}) \subseteq A \otimes_R G_\beta \otimes_R F''_\omega, \end{aligned}$$

and the homomorphisms $\psi'_\beta, \psi''_\beta : H'_\beta \rightarrow H''_\beta$ are induced by the maps $\sum_k id_{A \otimes G_\beta^{(k)}} \otimes \varphi'_k$ and $\sum_k id_{A \otimes G_\beta^{(k)}} \otimes \varphi''_k$, respectively.

For any $\beta \subseteq \gamma \subseteq \lambda$ we define the map $h_{\beta\gamma} : H_\beta \rightarrow H_\gamma$ to be the restriction of the map $id_A \otimes g_{\beta\gamma} \otimes id_{F_\omega} : A \otimes_R G_\beta \otimes_R F_\omega \rightarrow A \otimes_R G_\gamma \otimes_R F_\omega$ to the submodule H_β .

A straightforward analysis shows that H_β is a Kronecker A -module in $\mathcal{SKr}(A, \lambda)$ and the family

$$\{H_\beta, h_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \lambda}$$

is λ - A -free. For this purpose we apply the fact that the modules $\{F_\beta\}_{\beta \subseteq \omega}$ are in $\mathcal{SKr}(R, \omega)$ and we have constructed the family $\{G_\beta, g_{\beta\gamma}, \mathbf{Q}_i\}_{\beta \subseteq \gamma \subseteq \lambda, i \in \lambda}$ in such a way that the modules $G_\beta^{(k)} \subseteq G_\beta$ have free basis elements chosen like in the proof of Proposition 3.4 of [9, p. 37]. Then we can apply the arguments used in the proof of [9, Lemma 3.3 and Proposition 3.4].

It needs some mapping arguments to show that the direct system $\{H_\beta, h_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \lambda}$ has the properties (a)–(c) in Theorem 3.3. Fortunately, the proof given on pp. 40, 41 in [9] remains valid when we replace R_ϱ -modules \mathbf{H}_γ , $\gamma \subseteq \kappa$, in [9] by the Kronecker modules F_β , $\beta \subseteq \omega$. Here the equality (*) mentioned above applies. This finishes the proof of Theorem 3.3. ■

Proof of Theorem 1.2: It follows from Theorem 3.3 that there exists a direct system $\{H_\beta, h_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \lambda}$ in the category $\text{Mod}(\Gamma_2(R))$ of Kronecker R -modules satisfying the conditions (a)–(c) stated in Theorem 3.3.

We define a direct system $\mathbb{F} = \{\mathbb{F}_\beta, f_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \lambda}$ of R -linear additive functors

$$\mathbb{F}_\beta : \text{Mod}(A) \longrightarrow \text{Mod}(\Gamma_2(R))$$

connected by injective functorial morphisms $f_{\beta\gamma} : \mathbb{F}_\beta \rightarrow \mathbb{F}_\gamma$ by setting

$$\mathbb{F}_\beta(M) = M \otimes_A H_\beta \quad \text{and} \quad f_{\beta\gamma}(M) = id_M \otimes h_{\beta\gamma}$$

for any right A -module M . Since $h_{\beta\gamma} : H_\beta \rightarrow H_\gamma$ is an A -splittable monomorphism, then the $\Gamma_2(R)$ -homomorphism $f_{\beta\gamma}(M) : \mathbb{F}_\beta(M) \rightarrow \mathbb{F}_\gamma(M)$ is an R -splittable monomorphism. The remaining properties of the family \mathbb{F} required in

Theorem 1.2 follow from the properties (a)–(c) stated in Theorem 3.3. The proof is complete. ■

4. Open problems

In connection with the solution of the endomorphism ring problem given in Corollary 1.3, the following problem arises.

PROBLEM 4.1: *Prove that if K is a commutative field, then every K -algebra is isomorphic to an endomorphism algebra $\text{End } X$ of a torsion-free module X over the polynomial K -algebra $K[t]$.*

In connection with representation embedding problems studied in [17] the following open problems are stated in [18].

PROBLEM $(\hat{\gamma}_1)$: *Find finite dimensional K -algebras Λ (resp. bipartite finite dimensional K -algebras S of the form*

$$S = \begin{pmatrix} A & {}_A M_B \\ 0 & B \end{pmatrix}$$

where ${}_A M_B$ is an A - B -bimodule) for which the category $\text{mod}(\Lambda)$ (resp. the category $\text{prin}(R)_B^A$ of prinjective modules [16, Section 17.9]) is of infinite representation type if and only if there exists a full faithful exact functor

$$T: \text{mod}(\Gamma) \longrightarrow \text{mod}(\Lambda) \quad \text{resp.} \quad T: \text{mod}(\Gamma) \longrightarrow \text{prin}(R)_B^A,$$

where Γ is a finite dimensional K -algebra of the form

$$(4.2) \quad \Lambda_N = \begin{pmatrix} F & {}_F N_G \\ 0 & G \end{pmatrix},$$

F, G are division K -algebras and ${}_F N_G$ is an F - G -bimodule such that

$$(\dim {}_F N) \cdot (\dim N_G) = 4.$$

PROBLEM $(\hat{\gamma}_1^{sp})$: *Find finite dimensional K -algebras Λ (resp. bipartite algebras S of the form $S = \begin{pmatrix} A & {}_A M_B \\ 0 & B \end{pmatrix}$) for which the category $\text{mod}(\Lambda)$ (resp. $\text{prin}(S)_B^A$) is of infinite representation type if and only if there exists a representation embedding functor $\text{mod}_{sp}(\Gamma) \longrightarrow \text{mod}(\Lambda)$ (resp. $\text{mod}_{sp}(\Gamma) \longrightarrow \text{prin}(S)_B^A$), where Γ is a finite dimensional K -algebra of the form Λ_N as in Problem $(\hat{\gamma}_1)$, and $\text{mod}_{sp}(\Gamma)$ is the full subcategory of $\text{mod}(\Gamma)$ consisting of modules having the socle projective.*

Note that the characterization of minimal representation-infinite loop-finite artin algebras given by Skowroński in [21, Theorem 4.1] yields

THEOREM 4.3: Suppose that K is a field and Λ is a finite dimensional K -algebra which is loop-finite in the sense of [20], that is, the infinite radical $\text{rad}^\infty(X, X)$ is zero for any indecomposable module X in $\text{mod}(\Lambda)$. The Λ is of infinite representation type if and only if there exist division K -algebras F and G , an F - G -bimodule ${}_F N_G$ such that $(\dim {}_F N) \cdot (\dim N_G) = 4$ and a full faithful exact functor $\text{mod}(\Lambda_N) \rightarrow \text{mod}(\Lambda)$, where Λ_N is a finite dimensional K -algebra of the form (4.2)

The proof of Theorem 4.3 essentially depends on the results of Skowroński in [21, Theorem 4.1] and in [22, pp. 651–652] (see [12]).

In connection with Theorem 4.3 and the main result of the present paper, the following problem arises.

PROBLEM 4.4: Prove that if K is a commutative field, R is a commutative K -algebra and Λ is a representation-infinite loop-finite and finite dimensional K -algebra, then for any R -algebra A generated by at most λ elements, where λ is an infinite cardinal number, there exists a direct system

$$\mathbb{F} = \{\mathbb{F}_\beta, u_{\beta\gamma}\}_{\beta \subseteq \gamma \subseteq \lambda}$$

of R -linear additive functors $\mathbb{F}_\beta: \text{Mod}(A) \rightarrow \text{Mod}(R \otimes_K \Lambda)$ connected by functorial morphisms $u_{\beta\gamma}: \mathbb{F}_\beta \rightarrow \mathbb{F}_\gamma$ satisfying the conditions analogous to (i)–(iii) stated in Theorem 1.2.

In view of Theorem 4.3, Problem 4.4 reduces to algebras Λ of the form Λ_N (4.1), where F, G are finite dimensional division K -algebras and ${}_F N_G$ is a finite dimensional F - G -bimodule such that $(\dim {}_F N) \cdot (\dim N_G) = 4$.

COROLLARY 4.5: If K is an algebraically closed field, then Problem 4.4 has a positive solution.

Proof: By the remark above, without loss of generality we can suppose that $\Lambda = \Lambda_N$, where ${}_F N_G$ is a bimodule satisfying the conditions above. Since K is algebraically closed, then $F \cong G \cong K$ and there is a bimodule isomorphism ${}_F N_G \cong {}_K K_K$ along the ring isomorphisms $F \cong K$ and $G \cong K$. Consequently, the algebra Λ_N is isomorphic to the Kronecker K -algebra $\Gamma_2(K)$ (see (1.1)) and therefore there are ring isomorphisms $R \otimes_K \Lambda \cong R \otimes_K \Lambda_N \cong \Gamma_2(R)$. Then, according to Theorem 1.2 the corollary follows. ■

References

- [1] C. Böttger and R. Göbel, *Endomorphism algebras of modules with distinguished partially ordered submodules over commutative rings*, Journal of Pure and Applied Algebra **76** (1991), 121–141.
- [2] S. Brenner, *Decomposition properties of small diagrams of modules*, Symposia Mathematica **13** (1974), 127–141.
- [3] S. Brenner and M. C. R. Butler, *Endomorphism rings of vector spaces and torsion free abelian groups*, Journal of the London Mathematical Society **40** (1965), 183–187.
- [4] A. L. S. Corner, *Endomorphism algebras of large modules with distinguished submodules*, Journal of Algebra **11** (1969), 155–185.
- [5] A. L. S. Corner, *Fully rigid systems of modules*, Rendiconti del Seminario Matematico della Università di Padova **82** (1989), 55–66.
- [6] B. Franzen and R. Göbel, *The Brenner–Butler–Corner–Theorem and its applications to modules*, in *Abelian Group Theory*, Gordon and Breach, London, 1986, pp. 209–227.
- [7] L. Fuchs, *Infinite Abelian Groups*, Vol. 1 and Vol. 2, Academic Press, New York, 1970, 1973.
- [8] L. Fuchs, *Large indecomposable modules in torsion theories*, Aequationes Mathematicae **34** (1987), 106–111.
- [9] R. Göbel and W. May, *Four submodules suffice for realizing algebras over commutative rings*, Journal of Pure and Applied Algebra **65** (1990), 29–43.
- [10] R. Göbel and W. May, *Endomorphism algebras of peak I -spaces over posets of infinite prinjective type*, Transactions of the American Mathematical Society **349** (1997), 3535–3567.
- [11] R. Göbel and D. Simson, *Embeddings of Kronecker modules into the category of prinjective modules and the endomorphism ring problem*, Colloquium Mathematicum **75** (1998), 213–244.
- [12] P. A. Guil and D. Simson, *On Kronecker embeddings and the endomorphism ring problem*, preprint, Toruń, 1998.
- [13] F. Richman and E. Walker, *Ext in pre-abelian categories*, Pacific Journal of Mathematics **71** (1977), 521–535.
- [14] C. M. Ringel, *Infinite-dimensional representations of finite dimensional hereditary algebras*, Symposia Mathematica **23** (1979), 321–412.
- [15] S. Shelah, *Infinite abelian groups, Whitehead problem and some constructions*, Israel Journal of Mathematics **18** (1974), 243–256.

- [16] D. Simson, *Linear Representations of Partially Ordered Sets and Vector Space Categories*, Algebra, Logic and Applications, Vol. 4, Gordon & Breach Science Publishers, London, 1992.
- [17] D. Simson, *Triangles of modules and non-polynomial growth*, Comptes Rendus de l'Académie des Sciences, Paris, Série I **321** (1995), 33–38.
- [18] D. Simson, *Representation embedding problems, categories of extensions and preinjective modules*, in *Proceedings of the Seventh International Conference on Representations of Algebras*, Canadian Mathematical Society Conference Proceedings, Vol. 18, 1996, pp. 601–639.
- [19] D. Simson, *Prinjective modules, prepartite modules, representations of bocses and lattices over orders*, Journal of the Mathematical Society of Japan **49** (1997), 31–68.
- [20] A. Skowroński, *Cycles in module categories*, in Proc. AMS Annual Seminars, NATO Advanced Research Workshop, *Finite Dimensional Algebras and Related Topics*, Kluwer Academic Publishers, Dordrecht, 1994, pp. 309–345.
- [21] A. Skowroński, *Minimal representation-infinite artin algebras*, Mathematical Proceedings of the Cambridge Philosophical Society **116** (1994), 229–243.
- [22] A. Skowroński, *On omnipresent tubular families of modules*, in *Proceedings of the Seventh International Conference on Representations of Algebras*, Canadian Mathematical Society Conference Proceedings, Vol. 18, 1996, pp. 641–657.