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1. I n t roduc t ion  

Throughout this paper K is a field and R is a commutative ring with an identity 

element. 
Following Corner [4] many authors have studied nice subcategories fl, of a mod- 

ule category Mod(A) over finitely generated R-algebras A for which there exist 

large objects in .4 with prescribed endomorphism R-algebras and rigid direct 

systems of objects in fl, (see [1], [2], [6], [8], [9], [10], [14], [15]). The existence 

problem reduces to a corresponding problem for the category Mod(F2(R)) of 
Kronecker R-modules defined below, if there exists a full faithful and exact func- 
tor T : Mod(F2(R)) > A. Fortunately, such a functorial embedding can be 

constructed for many interesting subcategories A (see [11], [17], [18], [21]). 
In the present paper we solve the existence problem in the affirmative for the 

category Mod(F2(R)) of Kroneeker R-modules (see Theorem 1.2 and Corollary 
1.3). Our main result is successfully applied in [11], where among other things 

we get an alternative and short proof of Theorem 2 of [10]. 
We recall that a right module X over a generalized triangular matrix ring 

can be identified with the system 

X ~ ! It (XA, XB, ~), 

where X~4 is a right A-module, X~ is a right B-module and ~: X'| --4 X~ is 
a B-homomorphism (see [16]). We recall from [19] that the S-module X is said to 

be p ropa r t i t e  if X~4 is a projective A-module and X~ is a projective B-module. 
pr A We denote by Modpr(S)s the category of propartite right S-modules, and by 

modpr(s) A the full subcategory of Modpr(s) A consisting of finitely generated 

modules. 
For any ring A with an identity element, the generalized matrix A-algebra 

(1.1) F2(A)= ( A A2 

is called the Kronecker  A-algebra, where the multiplication is defined naturally 

by the formula 

(0 , 

The right F2(A)-modules are called Kronecker  A-modules.  Following the 

convention introduced above the category Mod(F2(A)) of Kronecker A-modules 
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X can be identified with the category of A-representations of the Kronecker 
quiver (see [14] and [16]) 

�9 ) �9 
) 

that is, the systems 

x = ( x ' , x " ,  ~', ~") 

where X ~ and X" are A-modules and ~ ,  ~": X ~ ~ X" are A-homomorphisms. A 

morphism from X = (X', X", ~', ~") to Z l  -- (X{, Z l  ~, ~0~, T'[) is a pair (f ' ,  f")  of 

A-module homomorphisms f '  : X ~ ~ X~, f "  : X "  --+ X[ ~ such that ~ f f  = f ' ~ '  

and ~ t f ,  = f ,~, , .  
The category Mod~(r2(A)) of propartite r~(A)-modules will be called 

the category of A-projective Kronecker  modules.  It is easy to see that 
ModpP~(F2(A)) can be identified with the category of A-projective representa- 
tions of the Kronecker quiver, that is, the A-representations P = (P~, P ' ,  ~ ,  ~ ' ) ,  
where P~ and P" are projective A-modules. 

The following theorem is the main result of this paper. 

THEOREM 1.2: Let R be a commutative ring with an identity element and let 

F2(R)= ( R0 R2)R 

be the Kronecker R-algebra (1.1). 
(a) For any R-algebra A generated by A elements, where A is an infinite cardinal 

number, there exists a direct system 

of full faithful R-linear exact functors F~: Mod(A)--+ Mod(F2(R)) connected by 

injective functorial morphisms f ~7: F~ -+ F7 satisfying the following conditions: 

(i) For every A-free module M in Mod(A), the Kronecker R-module ~ (M) = 

(M'~,M~',~'~,~'~) is A-free for all fl C_ A, the free A-modules M'~ and M~' are of 
rank ~, ~'~, ~'~: U'~ --~ M'~' are A-module monomorphisms such that Im ~'~ + 
Im ~'~ = U'~' and the modules U b / I m  ~', U~'/Im ~" are A-free. In p~t icul~,  
if  U is A-fref, the Kronecker R-module F~ ( U )  lies in the category ModP~ (F2 (A)) 

and has no direct summands of the form X = (X ~, X ' ,  ~ ,  ~o'), where X ~ = 0 
and X "  is a projective A-module. 

(ii) For every module M in Mod(A) and for all fl C_ 7 C_ A the F2(R)- 
homomorphism f~.r(M) : F~(M) -+ F7(M) is an R-splittable monomorphism. 
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(iii) I f  M and N are modules in Mod(A) then 

Homr~(R)(F~(M),Fv(N)) = 0 i f  t3 ~ % 

and the natural R-homomorphism 

HomA(M,N)  ) Homr~(R)(Fz(M),F.r(N)), g ~ fz.r(N) o Fz(g), 

is an isomorphism for all [3 C_ 7 c_ A. 

(b) Any R-algebra A is isomorphic to a F2(R)-endomorphism algebra of the 

form End X, where X is an A-free Kronecker A-module in Mod(F2(R)). 

An immediate consequence of Theorem 1.2 is the following generalization of a 

well-known result of Ringel [14, Corollary, p. 407]. 

COROLLARY 1.3: Let K be an arbitrary field. Every K-algebra generated by 

at most A elements, where A is an infinite cardinal number, is isomorphic to an 

endomorphism algebra End X of a Kronecker module X = (X', X I', ~', ~ ' )  in 

Mod K such that dimK X'  = dimK X"  = A, the K-linear maps ~' and 

~" are injective and X" = Im ~' + Im ~". 

Note that  in case R is a field K our Theorem 1.2 and Corollary 1.3 are close 

to the fact proved by Ringel [14, Corollary, p. 408] and asserting that every 

hereditary representation-infinite K-algebra A of finite dimension is "WILD" in 

the sense defined in [14, p. 408]. In particular, the result of Ringel [14, p. 408] 

provides us with a full and faithful embedding functor 

F: Mod(A) > M ~  K0 ? )  

for any K-algebra A. 
Let us remark that  our Theorem 1.2 is more general than the result of Ringel, 

because it implies the existence of such an embedding F satisfying in addition the 

conditions stated in (i) of Theorem 1.2. Moreover, it guarantees the existence of 

a rigid family of functors Fx satisfying the conditions (i)-(iii) of Theorem 1.2. 

The organization of the paper is as follows. In Section 2 we collect basic 

definitions and facts on A-families and rigid systems. We mainly follow the 

notations and terminology introduced in [9] and [10]. 
The proof of Theorem 1.2 is presented at the end of Section 3. It depends on 

several preparatory results proved in Section 3; the main ones are Theorem 3.3 

and Proposition 3.5. 
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Theorem 1.2 is valid for any infinite cardinals A; however, for sake of clarity we 

restrict our consideration to regular cardinals. The passage to singular cardinals 

does not depend on the particular modules and is given in [9]. 

An application of Theorem 1.2 is given in Corollary 4.5. Some open problems 

are discussed in Section 4. 

2. Generalities on A-families and rigid systems 

Assume that  R is a commutative ring with an identity element and A is a full 

subcategory of the category Mod(A), where A is an R-algebra. Throughout we 

usually assume that  the subcategory .4 is closed under taking arbitrary direct 

sums and under taking extensions in Mod(A). 

A sequence 0 -+ Y' -+ X -+ Y" -+ 0 in A is said to be exact in .4 if it is an 

exact sequence in Mod(A). 

We start  this section by recalling from [9] and [10] the definitions and basic 

facts on A-families. 

Let A be an infinite cardinal number and let ,4 be an arbitrary full subcategory 

of the category Mod(A), where A is an R-algebra. A A-family in ,4 is the A- 

directed system 

(2.1) 

in A, that  is, U~ is an object in A and u ~ :  U~ --+ U~ is a A-homomorphism in 

A for B C_ 7, such that  uz~ is the identity map on UZ, and if a C ~ C_ ,y then 

We say that  the A-family {Uf3,uf~.~}~c_.~c_), has the R-mono-splitt ing 
p r o p e r t y  ( resp.  is R-f ree)  if for all fl C_ ~ C_ A the homomorphism u ~  : UZ -+ 

U 7 is an R-splittable monomorphism (resp. ut~ 7 is injective and the modules U~, 

UT, Coker u~7 are R-free). If in addition the free R-modules U~, UT, Coker u~7 

are of rank A, the A-family is called A-R-free. 

A w e a k  A-family in ,4 is a A-family {U~, uzT}ZcTc~ in A such that  for all 

U 7 C_ A the sequence 

o >u ev  

is exact, where the maps are the natural ones induced by U~n-~,~, U~n-r,~, u/~,~u-r 

and u~,~u~. 

If M and N are R-modules, we say that the weak A-family {Uz, uz~}Zc_~c_~ in 

A is r ig id  for  the pair M, N if the following conditions hold: 
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( W l )  Direct sums of families for various a, ~ C_ A of the induced homo- 
morphism N | U~n~ -4 N | (Ua (9 U~) are semi-stable kernels (see [13]). 

(W2)  Any A-homomorphism U~ -4 (~c_x(N | U~) factors through a finite 

direct sum. 

(W3) /f  ~: U~ -4 N | UB is a A-homomorphism such that the composed 

homomorphism [TO ~ Uf~ r N | U~ is zero, then ~ = 0. 
HOmR(M,N) if /~ = ?, 

(W4)  HomA(M | U~, N | UT) = 0 if fl \ 7 is infinite, 
where the equality "=" means that the canonical R-homomorphism 

(2.2) HomR(M, N) > HomA(M | HE, N | H.y), 

f ~-+ f@uz7 , is bijective. If the family is rigid for every pair M, N of R-modules, 
we call it a rigid family. 

Remarks 2.3: (a) Note that according to the tensor product adjoint formula 

the condition (W4) holds for every R-module M if and only if (W4)  holds for 

M = R .  

(b) If we assume that the full subcategory .4 of Mod(A) is closed under taking 

arbitrary direct sums and under taking extensions in Mod(A), then every weak 
A-family {Uz, u/~}~c_Tc_~ in .4 has the property (Wl ) .  

A s t rong A-family in A is a system {H~,h~-~,Q~}~c_-~c~,#ex, where 
{Ha, h~-r}~cTg~ is a weak A-family in .4, and {Qi}ie)~ is a family of objects 
in .4 together with homomorphisms H/3 -4 (~ie# Qi such that, whenever/3 C_ 7, 
there is a commutative diagram 

H O ~ Hf~ ) (~iezQi --~ o 

H 0 ~ H 7 > ~ie.yQi ) 0 

in .4 with exact rows, where the right-hand vertical map is the natural direct 

sum embedding. 
It follows that the homomorphism h~7 is injective and there is an exact se- 

0 > Ha h ~  /_/7 > ~ Qi >0 
i6-y \/3 

in A for all/3 C_ ? C_ A. 
If M and N are R-modules, we say that the strong A-family 

{H/~, h~7, Qi}~gTcx,ie~ in A is s t rongly rigid for the  pair  M, N if the fol- 

lowing holds: 

quence 
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(S1) The R-homomorphism idN | h~-r: N | H~ -+ N | H-r is injective for 

all fl c_-y. 
($2) The R-homomorphism 

I~N,Q: N ) HOmh(Qi,N | Qi), 

n ~-+ (q ~-+ n | q), is bqective for any i E A. 

H o m A ( M | 1 7 4  HomR(M,N) if tiC_% (S3) 
0 if 

where the equality "=" means that the canonical R-homomorphism 

(2.4) HomR(M, N) ~ Homh(M | H~, N | H-r), 

f ~-+ f | hz-r, is bijective. 
If the family {H~, h~-r, Qi}/~c_-rc_~,ie~ is strongly rigid for every pair M, N of 

R-modules, we call it a s t rongly  rigid family. 

Remark 2.5: According to the tensor product adjoint formula, the condition 

($3) holds for every R-module M if and only if ($3) holds for M = R. 

Throughout, we assume that R is a commutative ring with an identity element, 
A is an R-algebra and A is a full subcategory of the category Mod(A) being closed 

under taking arbitrary direct sums and under taking extensions in Mod(A). 

The following proposition provides us with a useful reduction tool. 

PROPOSITION 2.6: Let A be an infinite cardinal number. Assume that R, A and 

,4 are as above. 

(a) For any weak A-family {U~,u/~.r}~c_-rc_~ in the category ,4 there exists a 

strong A-family {H~, hz-r, Qi}~c_-rc_x,ie~ in ,4 which is rigid for every pair of R- 

modules M and N for which the weak A-family is rigid. 

(b) If the A-family {U~, u~.r}~c_-rc~ has the R-mono-splitting property (resp. is 

A-R-free) then the new family {H~, h ~ ,  Q~}flc_-rc_~#e~ has the R-mono-splitting 

property (resp. is A-R-free). 

Proof: The statement (a) follows from [10, Proposition 1]. The statement (b) 
follows from the proof of [10, Proposition 1] and the arguments applied in the 

proof of [9, Proposition 2.3]. | 

Throughout, we denote by w the minimal countable ordinal number. We shall 

prove in Section 3 that there exists a rigid w-family of R-free Kronecker modules 

with some extra properties. From this we shall derive the existence of large rigid 

families of Kronecker modules by applying the so-called Shelah elevator to move 
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w-families up to any infinite cardinal A. This is based on a result by Shelah [15], 

which can be formulated in terms of R~-modules. 

By an R~-module we shall mean a system F = (F; F(k))k~w, where F is an 

R-module and {F(k): k E co} is a countable family of distinguished R-submodules 

of F.  A morphism r F --4 G between R~-modules F and G = (G; G(k))kc~ is 

an R-homomorphism r F --4 G such that r  (k)) C G (k) for all k E w. 

Assume that A is an infinite cardinal number. An R~-module F is said to be 

A-R-free if the R-modules F,  F (k), F / F  (k) are free of rank A for any k E w. 

A strong A-family {F~, f/~7, Qi}~c_Tc_~#e~ of R~-modules F~ and Qi is said to 

be A-R-free if the natural R-module embeddings F (k) C F~ and QI k) c_ Qi split 

and their complements are free R-modules of rank A for all/3 C_ A, i E A and for 

all k C co. 

In [15] Shelah essentially has proved the important special case R = Z of the 

following non-trivial "Shelah elevator". 

THEOREM 2.7: For any infinite cardinal number A there exists a strongly rigid 

A-R-free strong A-family { G~, g~'r, Qi }~c_-rc_:~,i~ ~ of R~-modules. 

Proof'. For the proof the reader is referred to [9] and [6, Section 3] (see also [15] 

for the proof in the case R = Z). | 

Definition 2.8: Let A be an infinite cardinal number and let A be an R-algebra. 

Following [10], by a A-family o f  f u n c t o r s  from Mod(A) to A we shall mean a 

direct system 

F = 

of R-linear additive functors ]F~ : Mod(A) > A connected by functorial mor- 

phisms f~x : F~ -4 F~. The system F is said to be r ig id  if for any pair of modules 

M and N in Mod(A) 

HomA(F~(M),F.r(N)) = 0 if/3 ~ 7, 

and the natural R-homomorphism 

(2.9) HomA(M,N) ) HomA(FB (M),F~r (N)), 

g ~4 f~(N)oF~(g) ,  is an isomorphism for all/3 C 7 C A. We say that  the system 

has the R - m o n o - s p l i t t i n g  p r o p e r t y  if for any module M in Mod(A) and for 

all/3 C 7 C_ A the R-homomorphism f ~ ( M ) :  F~(M) --4 F~(M) is an R-splittable 

monomorphism. 
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By applying Proposition 2.6, Theorem 2.7 and a method of Corner [4] the 
following important reduction result is proved in [10]. 

PROPOSITION 2.10: Assume that R is a commutative ring with an identity ele- 

ment, A is a full subcategory of the category Mod(A), where A is an R-algebra, 

and A is closed under taking arbitrary direct sums and under taking extensions 

in Mod(A). 
(a) If a weak w-family {Ua, ua~}ac_~c_~ in .4 is given, then for any infinite 

ordinal number A there exists a strong A-family 

{Ha, ha~, Qi}ac_-rc_~,ie~ 

in A, which is strongly rigid for every pair of R-modules M and N for which the 
weak w-family {U~, u~-r}~c_~c_~ is strongly rigid. 

Moreover, if the given w-family {U~,u~}~c_-rc_~ has the R-mono-splitting 

property (resp. is w-R-free), then the new family {H~, ha~, Qi}ac_-r_c~,ie~ has 
the R-mono-splitting property (resp. is A-R-free). 

(b) For any infinite cardinal number A, for any R-algebra A generated by A 

elements and for any strong A-family {Ha, h~-r, Qi}/~___~c_~,ie~ in .4, there exists a 

A-family IF = {]Fa, fa~}ac_~c_~ of R-linear additive functors F a : Mod(A) > A, 
which is rigid for every pair of A-modules M and N for which the strong A-family 

{Ha, ha-r, Qi}ac_~_c~#ex is strongly rigid. 

Moreover, if the given A-family {H~,ha~,Q~}~c~c_x,ie~ has the R-mono- 

splitting property (resp. is A-R-free), then the new family F = {Fp, fav}ac_vc_x 
has the R-mono-splitting property (resp. is A-R-free). 

3. R i g i d  famil ies  o f  K r o n e c k e r  m o d u l e s  

Let R be a commutative ring with an identity element and let A be an R-algebra. 
We recall from Section 1 that 

F 2 ( A ) = (  A0 A2)A 

is the Kronecker A-algebra and Modg:(P2(A)) is the category of all A-projective 
Kronecker modules. Any such module P is identified with the system 

(3.1) P = (P', P"; ~', ~"), 

where P '  and P"  are projective A-modules and ~o',qo": P'  --4 P"  are 
A-homomorphisms. 
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We will frequently deal with a special kind of R-projective Kronecker module 
defined as follows. 

Fix an infinite cardinal number A. The Kronecker A-module P will be called 

spl i t table  free of  rank (A, A) if PI and P" are free A-modules of rank A, the 

A-homomorphisms ~ ,  ~" : P '  --+ P"  are splittable monomorphisms and the A- 

modules P " / I m  ~' and P " / I m  Tt, are free. We denote by 

(3.2) S~ICr(A, A) 

the full subcategory of ModpP:(F2(A)) formed by splittable free Kronecker 

A-modules P = (P', P"; ~', ~o") of rank (A, A) such that P"  = Im ~' + Im ~". 

The main result of this section is the following. 

THEOREM 3.3: Let R be a commutative ring, A an infinite cardinal number and 

A an R-algebra which is generated by A elements. Then there exists a direct 

system { H~, hz~ } ~c_~c_x in the category Mod(F2(A)) of Kronecker A-modules 

with the following properties: 
(a) Each H~ is in the category SJrl~r(A, A) and each h ~  is an A-module 

homomorphism. 
(b) The family {Hz, h~.r}~c_xc_;~ is A-A-free. 
(c) For any pair of A-modules M and N we have 

HomA(M,N) if t3c_% 
Homr2(R)(M | H~ ,N  | H~) = 0 if t3 ~'T, 

where the equality "=" means that the canonical R-homomorphism 

HomR(M, N) ) Homr2(R)(M | HZ, N | H~), 

f ~-~ f | h~x, is bijective. In other words {Hz, h~x}~c~c~ is a fully rigid system 

in the sense of Corner [5]. 

The proof is presented at the end of this section. We precede it by two 

preparatory important propositions. 
By a slight modification of the proof of Proposition 2.3 in [9] we get the 

following result reducing the problem about the existence of rigid families to 

the existence of weak rigid families. 

PROPOSITION 3.4: If  there exists a rigid weak A-family of Kronecker R-modules 

in the category S3~ICr(R, A) with the R-mono-splitting property (resp. A-R- 

free), then there exists a strongly rigid strong A-family of Kronecker R-modules 

in S3rlCr( R, A) with the R-mono-splitting property (resp. A-R-free). 
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A crucial part of the proof of Theorems 3.3 and 1.2 is the following result which 
is a variation of a theorem of Baer (see ~ c h s  [7, Vol.2]) blended with an idea of 
Ringel (see the proof of Theorem 6.9 in [14]). 

PROPOSITION 3.5: (a) There exist a rigid weak w-family {F~,u~-r}~c_Tc_~ 
Kronecker R-module 

" ' F'~') 

of rank (w, w), and elements e~ E F~' satisfying the following conditions: 

(i) the module F~ belongs to SY:ICr(R,w)) for every/3 C_ w; 
(ii) for all/3 c_ 7 C_ w the homomorphism uz7: F~ --+ F~ is an R-splittable 

monomorphism and there is a Kroneeker module isomorphism 

(3.5a) F . j i m  u~.y "~ @ R(pi(x)) 
i E 7  \ g 

where 

(3.5b) = r  

g,~ is the identity map on R[x]/(pi(x)) and r : n[x]/(pi(x)) --+ n[x]/(pi(x)) is 
induced by the scalar multiplication by x; 

(iii) F j  = I m  ~ + I m  ~ ,  Im ~ @ Re/~ -- F~', Im ~ | Re~ = F~' and 

u~7(ef~ ) = e 7 for all/3 C_ 7 C_ w. 
(b) There exists a strong w-family of splittable R-free Kronecker R-modules of 

rank (w, w) (that is, objects in SYrlCr( R, w) ), which is strongly rigid and w-R-free. 

Proof: The statement (b) of the proposition follows from (a) and Proposition 

3.4. The proof of (a) is divided into four steps. 

STEP 1: We define a multiplicative subset S C R[x] and R[x]-submodules L~, 

/3 C_ w, of the localization S-1R[x] of R[x] with respect to S with the following 

properties: 
(al)  L~ is an S-torsion-free R[x]-submodule of rank 1 of S-1R[x] for any 

/3Cw.  
(a2) If/3 C_,-y C_ w then L~ C L 7. 

(a3) If N ,is an R-module and/3 U 7 C_ w, then 

N, if / 3=7 ,  
HomR[~] (L~, N | LT) = 0, if /3\7 is infinite, 
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where HomRM (L~, N | L~) = N means that the R-homomorphism 

~N,L: N > HomR[~](L~, N | L-~), 

n ~-+ (g ~-> n | ~), is bijective. 

For this purpose we define inductively the countable set of polynomials 

Po,Pl,P2,...Pn,... E R[x] 

by setting P0 = x + 1 and Pi+l = 1 + X "POPl "" "Pi. Observe that  

(i) pi(0) = 1 for all i E N, and 

(ii) the polynomials Pi, i c N, are pairwise comaximal, that is, for any i ~ j 

there exist qi, qj c R[x] with 1 = Piqi + Pjqj. 
We take for S the multiplicative closure in R[x] of the set {Po,Pl,P2,..-}. It 

follows that  S has no zero divisors in R[x], and R[x] becomes a subring of the 

localization S-IR[x]. As in [9], for any ~ C w we define L~ to be the R[x]- 
submodule 

L ~ = {  f , f 6 R [ x ] , a l l i o , . . . , i k a r e d i s t i n c t i n f l } C  S-1R[x] 
P i o  . . . . .  P i ~  

of S-1R[x]. The properties ( a l )  and (a2) easily follow from the definition. 

Note also that  if i E ~, then piL~ = R[x] @ F~\{i}, and if i E w \ fl, then 

piL~ = piR[x] @ F~. It follows that in any case piL~ has a free R-module 

complement in L~ and the module N | L~ is S-torsion-free for any R-module 

N. Then the property (a3) follows by applying the rank 1 considerations as in 

Baer's theorem in Fuchs [7, Vol.2, pp. 110 and 124] (see also [9, Lemma 3.1]). 

STEP 2: For any/~ C w we define an R-free Kronecker module 

I I I  �9 I f  �9 I (3.6) = (F;, F;, F; F;') 

in SJ:]Cr(R,w), where F~ and F~' are R-submodules of L~ defined as follows. 

Let di be the degree of Pi- We set 

d i - 1  : d i - 1  j 

j = O  

and if fl C w, we define F~ to be the R-submodule 

c_ S- l  R[x], 
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of S-1R[x]. Since F (~ is the pi-primary component of F~ and pt # pj for 

i # j ,  then the primary decomposition theorem yields F~ = (~icZ F(~ and 

L~ = F~ ~ R[x] is an R-module decomposition by the partial fraction argument 

based on the property (ii) above (see [9, p. 35]). 
Now we define F~ p to be the R-submodule 

I~' = F~ + R1 C_ S -1R[x] 

of S -1R[x]. Observe that  F~- x C F~ I, F~ 1 = F~ @ R1 and R1 = F'/f3 R[x]. 
Finally, we define two R-monomorphisms 

9~, F~ ) F~ 

where p~ is the natural embedding F~ ~-~ F~ t, and ~ is defined by the formula 

" is the scalar multiplication by x, ~v'~(f) = f .x, that is, ~vZ 
I I I .  The Kronecker R-modules F~ = (F~, F~, ~v~, ~ ) ,  /3 C w, (3.6) have the 

following properties: 
(a4) If/3 _C w is infinite, then F~ is in S~K:r(R,w), and there are R-module 

decompositions 

(3.7) 
I 11 11 Im ~n + Im ~ = F~. 

(ab) For any ~, 3' C_ w the sequence 

>Fzu  >0 

is exact, where the maps are the natural ones induced by u~nT,~, U~nT,7, u~,~u-y 

and uT,~uT. 
The property (aS) follows easily from the definition of the modules F~ and the 

maps uT,z. 
Now we shall prove (a4). Since the decomposition F~ I = F~ @ R1 is obvious it 

remains to show that  Im ~ has the R-free complement 1R in F~'. 

To see this we consider g E F(~ N 1R. Then there exists a polynomial 

f(x) e R[x] such that f(0) = 0 and g(x) = f(x)/pi(x). Hence f (x)  = g(x)pi(x). 
Since 0 = S(0) = g(0)p~(0), g e R and p~(0) = 1 by the choice ofp~ then 

g = g(0) = 0. It follows Im ~v~ has a free complement 1R in F~ I, The R-ranks of 

the free modules can be computed easily. The remaining equality in (3.7) follows 

from the easy observation that R1 C_F~+F~x: ' 
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STEP 3: We define the element e/3 E F~ ~ to be the element I C F~ j. Since 
Im ~p~ -- F~, then (3.7) yields Im ~} �9 Re~ -= F~' and Im ~ �9 Re~ ---- F~' for all 
/3C_w. 

If/3 C_ 3' C w, then the embedding L~ C_ L~ induces the R-module embeddings 
I I u ~ :  F~ C_ F~ and u ~ :  b- H C_ F~ ~ such that 

! I! (3.8) u/3~ = (u/3~, u/3~): F/3 ~ F.y 

is an embedding of Kronecker modules in $~Er(R ,  ca). 
It follows from the definition that u/3~(e~) = e~ for all/3 C 3' C w. Hence we 

easily conclude that there is a Kronecker R-module isomorphism 

~ - - I  - - I f  I II 
(3.8a) F.y/Im ut~ ~ = (F~#, F.~,i, ~ , i ,  ~ , i )  

iE3' "- [3 

where F!~i, = r~i ,  = F(~ ~ , i  is the identity map and ~'!~,~ : F (~ --+ F (~ is 
induced by the scalar multiplication by x. It is easy to see that for every i there 

is a Kronecker R-module isomorphism 

- - I  - - I t  I II (F~#,F~,i,~,~,~#) ~- R(g~(x)). 

STEP 4: Now we shall construct a rigid weak ca-family {Fz,u~v}Oc_~_~ of 

Kronecker R-modules in the category SUl~r(R, w). 
For this purpose choose any infinite subset /30 of ca such that ca \ / 3  is also 

infinite. It follows from (a4) that the family F/3, /30 C /3 C_ w, constructed in 
Step 2 is in SU3gr(R, w). We take for u/3.~ the Kronecker R-module embeddings 

(3.8). 
If we relabel w\/30 by ca, then we get an ca-family {F~, u~}/3~_~r of some of 

the original Kronecker R-modules F~. We shall show that {F~, u z ~ } / ~ c ~  has 

the required properties. 
By (a4) and (a5),  {F~,u~}~_~_~ is a weak w-family in 8~IEr(R,w). 
In the proof that {Fo,u~}~_~<_~ has the properties ( W l ) - ( W 3 )  (see 

Section 2) we shall apply the following property: 

(a6) If f = (f ' ,  f") :  Ft~ ~ U |  F.~ is a homomorphism of Kronecker R- 
modules, then there exists an R[x]-homomorphism f!': L/3 --+ N |  L.~ such that 

the diagram 
u~ 

F~ I ~ Lt~ 

k, p, 
idN~u~ 

N | F~' ~ N | L.y 
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is commutative, where u# is the natural embedding F~' = F~ G n l  C F'~ �9 nix] 
= L#. 

In order to define f "  we recall that  

f '  �9 HomR(F~, N | F~), f "  C HomR(F~', N | F~') 

are such that  

(,) (idN | ~'7)f' ---- f"~'~ and (idN | ~'~)f' = f " ~ .  

We shall identify the Kronecker R-module N | F~ with the system 

l I I  " I �9 I t  
(N | F 7, N | F~, ~dN | ~'r' zdN | ~'r), 

where idy | is the natural embedding and idg @~'~ is the scalar multiplication 

b y x .  

We define f-": L# --+ N | L~ as follows. If e is an element of L~ and g ---- 

~' + h(x), g' �9 F~, h(x) �9 R[x], we set 

(3.9) f-" = (idN @ u.r)(f"(g')) + [(idN | u~)f"(1R)] �9 h(x). 

It is clear that  f "  is an R-homomorphism and the diagram above is commutative. 

We shall show that  f "  is an R[x]-homomorphism. For this purpose we note 

that  9~'(m) = (idN | u.y)f"(m) for all m �9 F~'. Hence, in view of (*), we get 

f"(6', x) 
=(idN | ~) f ' (6 ' )  

=[(idg | ~) f ' ( g ' ) ]  �9 x 

----[f"~(6')] �9 x 

=[f"(s �9 x 

for any 6' �9 F~. It follows that  

?'(~' . x) ----(idg | u.y)f"(g' . x) 

=-(idN | u~)(f"(6 ' ) ,  x) 

=[(idN | u~)f"(6')] - x 

= [ # , ( 6 ' ) 1  �9 x 

for any 6' �9 F~, and therefore j~' is an R[x]-homomorphism. 

Now we shall prove that  {F#, u#~}#c_-rg~ has the properties ( W l ) - ( W 3 )  (see 
Section 2). 
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For ( W l )  we apply Remark 2.3 (b). It follows from the tensor product adjoint 
formula that in order to prove the condition (W4)  for any pair of R-modules M 
and N, it is enough to prove it for M = R and for any N. 

Assume that f = (f ' ,  f"): FZ ~ N | F.y is a homomorphism of Kronecker 

R-modules. I f /3\7 is infinite, then by applying (a3) we get f "  = 0; hence f "  = 0 
and f = 0 as well. Then the bottom equality in (W4)  follows. 

In order to prove the top equality in (W4)  assume that ~ = 7- It is easy to 

see that the following diagram is commutative: 

III N , F 
N > Homr2(R)(F~,NQRF,~) 

~I~ N, L 
N > HomRM(L~,N | L-~) 

where ~t~N, L is defined in (a3),  qSV,F is defined analogously and, given a homo- 

morphism f = (f ' ,  f " )  : FZ --+ N | F.y of Kronecker R-modules, we take for 

O(f )  the R[x]-homomorphism f-" defined by the formula (3.9). 

It is clear that 0 is an injective R-homomorphism. Since, according to (a3),  

the map ~ N , L  is bijective, then ~ N , F  is bijective and (W4)  follows. 

In order to prove (W2)  assume that g = (g', g") : FB --~ @~er  N | F.y is a 
homomorphism of Kronecker R-modules, where F is an arbitrary set. It follows 
from (a6) that the R-homomorphism g" extends to an R[x]-homomorphism g~' 
making the following diagram 

u~ 
F~ p > L~ 

P' 

~ e r  N | F~, ~ 
~ T E F  idN| 

) ~ e r  N | L~ 

commutative. Since L~ is of a "rank-one type" R[x]-module, then the R[x]- 
homomorphism g~' factors through a finite direct sum ~ c r o  N | L-y contain- 
ing the element f"(1) .  It follows that g" factors through a finite direct sum 

~ e r o  N | F-~ '. Hence (W2)  easily follows, because ~ : Ft~ ~ / ; j  is the 

natural embedding. 

The property (W3)  follows in a similar way by applying the definition of the 

Kronecker modules Ft~ and the choice of ~0. 
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Consequently, the w-family {F~, u~7}~c_.~c_~ of Kronecker R-modules in the 

category SY]Cr(R, w) is a rigid weak w-family satisfying the required conditions 

(i)-(iii). 

This finishes the proof of the statement (a) and of the proposition. | 

Proof of Theorem 3.3: Let A be an infinite cardinal number and let A be an 

R-algebra which is generated by the set {ai}ie~. It follows from Theorem 2.7 

that  there exists a strongly rigid A-R-free strong A-family of R~-modules. 

Let {G~, g~7, Qi}flc_Tc_~,ie), be such a family and let 

for ~ C t .  Following Brenner and Butler [3] (see also Corner [4, p. 162]) we shall 

modify the family in two steps as follows. 

STEP 1: Since any Gf~ is ,~-R-free, then we can choose a free basis {gi, 9~, i ~ I} 
for GO. Define 

A~ = {a| +aiaNg~,a ~ A} C_ A |  0 C_ A| 

which is isomorphic to AR. If A* = ~ i e ~  A~ C A | GZ, then A* = ( ~  A~ 

~ A has A-free complement ~ i e ~  A| '~ ( ~  A in A| (hence has A-free 

complement in A | GZ). Moreover, we have (see [9, p. 39, Lemma 4.1]) 

(,) {(I) 6 Hom(A | G~, A | G~), (I)(A*) C_ A*} = A(idA | g~). 

STEP 2: We shall modify the given rigid A-family of R~-modules and obtain 

another one which we will also denote by {G~, gzT, Qi}~cTc_n#e~. 

First we shift the indices k E w by k ~-~ k + 2 and we derive the R~-modules 

I,~ G(k)~ G~ = t~'~; ~ )2_<ke~ for 13 C_ A. Recall from Section 2 that for any/3 C_ A there 

is an exact sequence 

0 ---4 G O ) G~ > ( ~  Q~ ---4 o. 
icfl 

Next we add two distinguished )~-free submodules G~, G~ to GB and Q0, QI to Qi, 
respectively, and the resulting new family {G~,g~7, Qi}Bc_Tc_~,ie~ will be the 

desired one. Let G~ = ~ic~ R(gi + g~), G~ = G~ and Q0 = 0, Q~ = Qi. It is 

easy to check that  the new family satisfies the required conditions. 



310 R. G()BEL AND D. SIMSON Isr. J. Math. 

STEP 3: Now we use the new A-family {G~, g~.~, Q~}~c_~c_~,~e~ of R~-modules 
and a given rigid w-family of Kronecker R-modules (given in Proposition 3.5) 

to produce a A-A-free direct system {Hz, hz.r}Z~_~c_~ of Kronecker A-modules in 

S~)Ur(A, )Q. 

It follows from Proposition 3.5 that there exists a strongly rigid w-R-free 

w-family of Kronecker R-modules in S$'K:r(R,w) satisfying the conditions in 

Proposition 3.5. 

Let {F~, f ~ ,  Q~}f~_~c_~#e~ be such a family, where 

' " F~ ---(F'~,F~, ' " ~ ,  ~ofl: F~ --+ 

For k e N we put Fk = F{k}. Then f ~  = ( f ~ ,  f~%): F~ -+ F~ is an R-splittable 

monomorphism for all/3 C 3' C_ w. 

Let {G~, g~.y, Q~}~c_~c_~,i~ be the new A-family above and 

= w h e r e  k)  

We can construct a new family in such a way that the modules G (k) _c G~ have 

free basis elements chosen like in the proof of Proposition 3.4 of [9, p. 37]. 

Since G~ is A-R-free, then the map idA | v~,k: A | G (k) ~ A | G~ induced 

by the natural injection vo,k: G (k) ~-+ G~ is injective and A-splittable. 

Moreover, the modules A | G (k), A |  G~ and the complement of 

Im(idn | v~,k) in A | G~ are A-free of rank A. 

Since fk~ -- ( f ~ ,  f~'~): Fk --+ F~ is an R-splittable monomorphism for any 

k E w, then the map 

idA | v~,k | fk,,, : A | G (k) | Fk ~ A | G~ | F,, 

induced by the monomorphisms vfl,k : G (k) r G~ and fk~ is injective for any 

k C w and any/3 C A. 

We define the Kronecker A-module A | G~ | F,,, to be the Kronecker R- 

module F~ tensored with the free A-module A @R G~ of rank A. For any/3 C_ 

we set 

H~ -- E Im(idA | v~,k | fk,o) C A | Gt~ | F,,,. 
kEw 

More explicitly, we have 

' " 
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where 

H~ = E Im(idA | | f ~ )  C_ A| G~ | F~, 
k~w 

H~' = ~ Im(idA|174 C_ A|174 
k~w 

and the homomorphisms r162 : H~ -+ H~ are induced by the maps 

~-~k idA| | ~ and ~-~k idA| | ~ ,  respectively. 

For any ~ C - /C  A we define the map h~7: Ht~ --+ H 7 to be the restriction of 

the map ida | g~ | idF~ : A | GZ | F~ ~ A | G7 | F~ to the submodule 

Ha. 
A straightforward analysis shows that HZ is a Kronecker A-module in 

SJ:Er(A, )~) and the family 

is A-A-free. For this purpose we apply the fact that the modules {F~}~c_~ are in 

S~t~r(R, w) and we have constructed the family {G~, g~.y, Qi}zc_~c_~,ie~ in such 
a way that  the modules G (k) c_ GZ have free basis elements chosen like in the 

proof of Proposition 3.4 of [9, p. 37]. Then we can apply the arguments used in 

the proof of [9, Lemma 3.3 and Proposition 3.4]. 

It needs some mapping arguments to show that the direct system 

{H~,h~7}~cTc_~ has the properties (a)-(c) in Theorem 3.3. Fortunately, the 

proof given on pp. 40, 41 in [9] remains valid when we replace R :modu les  HT, 

C to, in [9] by the Kronecker modules F~, f~ C_ w. Here the equality (*) men- 

tioned above applies. This finishes the proof of Theorem 3.3. | 

Proof of Theorem 1.2: It follows from Theorem 3.3 that there exists a direct 
system {Ha, hz~}~Tc_~ in the category Mod(F2(R)) of Kronecker R-modules 

satisfying the conditions (a)-(c) stated in Theorem 3.3. 

We define a direct system F = {F~, f~7}~c_7c_~ of R-linear additive functors 

FZ: Mod(A) ~ Mod(F2(R)) 

connected by injective functorial morphisms f~7 : Ff~ --+ F 7 by setting 

F~(M) = M | Ha and f~7(M) = idM | hf~ 7 

for any right A-module M. Since h~7 : H a ~ H 7 is an A-splittable monomor- 

phism, then the F2(R)-homomorphism ft~7(M) : Fz(M) ~ FT(M ) is an R- 

splittable monomorphism. The remaining properties of the family F required in 
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Theorem 1.2 follow from the properties (a)-(c) stated in Theorem 3.3. The proof 
is complete. | 

4. O p e n  p r o b l e m s  

In connection with the solution of the endomorphism ring problem given in Corol- 
lary 1.3, the following problem arises. 

PROBLEM 4.1: Prove that i l K  is a commutative field, then every K-algebra is 
isomorphic to an endomorphism algebra End X of a torsion-free module X over 
the polynomial K-algebra K[t]. 

In connection with representation embedding problems studied in [17] the 

following open problems are stated in [18]. 

PROBLEM (71): Find finite dimensional K-algebras A (resp. bipartite finite di- 
mensional K-algebras S of the form 

where AMB is an A-B-bimodule) for which the category mod(A) (resp. the cate- 
gory prin(R)~ of prinjective modules [16, Section 17.9]) is of infinite 
representation type if  and only if there exists a furl faithful exact functor 

T: mod(r )  ~ mod(A) resp. T: mod(I') ~ prin(R)BA), 

where F is a finite dimensionM K-algebra of the form 

G ' 

F ,  G are division K-algebras and FNG is an F-G-bimodule such that 

(dim Fg)  " (dim NG) = 4. 

PROBLEM ( ~ P )  : Find finite dimensional K-algebras A (resp. bipartite algebras 

S ~ 1 7 6  ( AO A M B )  ) f~176176 (resp" prin(S)A) 

is of infinite representation type if and only if there exists a 
representation embedding functor modsp(r) ~ mod(h) (resp. modsp(F) - -+ 
prin(S)A), where F is a finite dimensional K-algebra of the form Alv as in 

Problem (~1), and modsp(r) is the full subcategory of mod(F) consisting of 
modules having the socle projective. 

Note that the characterization of minimal representation-infinite loop-finite 

artin algebras given by Skowrofiski in [21, Theorem 4.1] yields 
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THEOREM 4.3: Suppose that K is a field and A is a finite dimensional K-algebra 

which is loop-finite in the sense of [20], that is, the infinite radical rad~ X) 

is zero for any indecomposable module X in mod(A). The A is of infinite rep- 

resentation type if  and only if there exist division K-algebras F and G, an F-  

G-bimodule FNG such that (dim FN)  �9 (dim Na) = 4 and a full faithful exact 

functor mod(AN) ---+ mod(A), where AN is a finite dimensional K-algebra of 

the form (4.2) 

The proof of Theorem 4.3 essentially depends on the results of Skowrofiski in 

[21, Theorem 4.1] and in [22, pp. 651-652] (see [12]). 

In connection with Theorem 4.3 and the main result of the present paper, the 

following problem arises. 

PROBLEM 4.4: Prove that if K is a commutative field, R is a commutative 

K-algebra and A is a representation-infinite loop-finite and finite dimensional 

K-algebra, then for any R-algebra A generated by at most A elements, where A 

is an infinite cardinal number, there exists a direct system 

of R-linear additive functors F~: Mod(A) ---+ Mod(R|  A) connected by func- 

torial morphisms u~7: F~ --+ F 7 satisfying the conditions analogous to (i)-(iii) 

stated in Theorem 1.2. 

In view of Theorem 4.3, Problem 4.4 reduces to algebras A of the form AN 

(4.1), where F, G are finite dimensional division K-algebras and FNG is a finite 

dimensional F-G-bimodule such that (dim FN)"  (dim NG) = 4. 

COROLLARY 4.5: I f  K is an algebraically dosed field, then Problem 4.4 has a 

positive solution. 

Proof: By the remark above, without loss of generality we can suppose that  

A = AN, where FNG is a bimodule satisfying the conditions above. Since K 
is algebraically closed, then F ~ G ~ K and there is a bimodule isomorphism 

F N c  ~- K K K  along the ring isomorphisms F ~ K and G ~ K. Consequently, 

the algebra AN is isomorphic to the Kronecker K-algebra F2(K) (see (1.1)) and 

therefore there are ring isomorphisms R ~ g  A -~ R |  AN ----- F2(R). Then, 

according to Theorem 1.2 the corollary follows. | 
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