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ABSTRACT

Let R be a commutative ring with an identity element and let T2(R) =

R R?
(0 R be the the Kronecker R-algebra. One of our main results

is Theorem 1.2 asserting that for any R-algebra A generated by A ele-
ments, where X is an infinite cardinal number, there exists a rigid di-
rect system F = {Fg, f3,}3cycr (see Definition 2.8) of fully faithful
R-linear exact functors Fg: Mod(A)—sMod(T'2(R)) connected by R-
splitting functorial monomorphisms fz,: Fg3 — F, satisfying some extra
conditions. In particular, if R is a field then every R-algebra generated
by at most X elements is isomorphic to an endomorphism algebra End X
of a Kronecker module X = (X', X",¢',¢'") in ModI'2(R) such that
dimp X’ = dimg X" = A, the R-linear maps ¢',¢": X’ — X" are injec-
tive and X" =1Im ¢’ +Im ¢".
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1. Introduction

Throughout this paper K is a field and R is a commutative ring with an identity
element.

Following Corner [4] many authors have studied nice subcategories A of a mod-
ule category Mod(A) over finitely generated R-algebras A for which there exist
large objects in A with prescribed endomorphism R-algebras and rigid direct
systems of objects in A (see [1], [2], [6], [8], [9], [10], [14], [15]). The existence
problem reduces to a corresponding problem for the category Mod(I'2(R)) of
Kronecker R-modules defined below, if there exists a full faithful and exact func-
tor T' : Mod(I'2(R)) — A. Fortunately, such a functorial embedding can be
constructed for many interesting subcategories A (see [11], [17], [18], [21]).

In the present paper we solve the existence problem in the affirmative for the
category Mod(I'2(R)) of Kronecker R-modules (see Theorem 1.2 and Corollary
1.3). Our main result is successfully applied in [11], where among other things
we get an alternative and short proof of Theorem 2 of [10].

We recall that a right module X over a generalized triangular matrix ring

(A aMp
5= (0 %)

can be identified with the system
X = (X:Qngv()o)a

where X', is a right A-module, X} is a right B-module and ¢: X'® 4Mp — X3 is
a B-homomorphism (see [16]). We recall from [19] that the S-module X is said to
be propartite if X/, is a projective A-module and X3 is a projective B-module.
We denote by Modgi(S)g the category of propartite right S-modules, and by
modB:(S)4 the full subcategory of ModBr(S)5 consisting of finitely generated
modules.

For any ring A with an identity element, the generalized matrix A-algebra

(L.1) Ta(A) = <6‘ ‘f)

is called the Kronecker A-algebra, where the multiplication is defined naturally

(9 2)-(¢ *2)

The right T'y(A)-modules are called Kronecker A-modules. Following the
convention introduced above the category Mod(I'2(A)) of Kronecker A-modules

by the formula
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X can be identified with the category of A-representations of the Kronecker
quiver (see [14] and [16])

that is, the systems
X = (Xl’ XII’ (PI) (p”)

where X’ and X" are A-modules and ¢', ¢": X' — X" are A-homomorphisms. A
morphism from X = (X', X", ¢',¢") to X1 = (X1, X!, ¢}, ¢Y) isapair (f, f") of
A-module homomorphisms f': X’ = X], f” : X" — X{ such that ¢} f' = f"¢’
and (plllfl = ",

The category Modbi(T'2(A)) of propartite I'2(A)-modules will be called
the category of A-projective Kronecker modules. It is easy to see that
ModB;(I'2(A)) can be identified with the category of A-projective representa-
tions of the Kronecker quiver, that is, the A-representations P = (P', P”, ¢, ¢"),
where P’ and P” are projective A-modules.

The following theorem is the main result of this paper.

THEOREM 1.2: Let R be a commutative ring with an identity element and let
R R?
be the Kronecker R-algebra (1.1).

(a) For any R-algebra A generated by A elements, where ) is an infinite cardinal
number, there exists a direct system

F = {Fg, fay}scvcx

of full faithful R-linear exact functors Fg: Mod(A)— Mod(I'2(R)) connected by
injective functorial morphisms fg: Fg — F, satisfying the following conditions:

(i) For every A-free module M in Mod(A), the Kronecker R-module Fg(M) =
(Mg, Mg, 0, ) is A-free for all § C A, the free A-modules M and Mg are of
rank A, @, ¢ Mg — Mg are A-module monomorphisms such that Im Pp +
Im ¢ = My and the modules Mp/Im ¢/, Mg/Im ¢" are A-free. In particular,
if M is A-free, the Kronecker R-module Fg(M) lies in the category ModB;(I'2(A))
and has no direct summands of the form X = (X', X",¢',¢"), where X' =0
and X" is a projective A-module.

(ii) For every module M in Mod(A) and for all 8 C v C X the I';(R)-
homomorphism fg,(M) : Fg(M) — F, (M) is an R-splittable monomorphism.
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(iii) If M and N are modules in Mod(A) then

HomFg(R)(Fﬁ(M)a]F'Y(N)) =0 ifg<Z,

and the natural R-homomorphism
Homu (M, N) —— Homr,(r)(Fp(M),Fy(N)), g+ fp,(N) 0 Fs(g),

is an isomorphism for all § C v C A.
(b) Any R-algebra A is isomorphic to a I'y(R)-endomorphism algebra of the
form End X, where X is an A-free Kronecker A-module in Mod(T'2(R)).

An immediate consequence of Theorem 1.2 is the following generalization of a
well-known result of Ringel [14, Corollary, p. 407].

COROLLARY 1.3: Let K be an arbitrary field. Every K-algebra generated by
at most X\ elements, where A is an infinite cardinal number, is isomorphic to an
endomorphism algebra End X of a Kronecker module X = (X', X", ¢/, ¢"} in

2
Mod (Ig II{{ ) such that dimyg X' = dimg X" = A, the K-linear maps ¢’ and

" are injective and X" =1Im ¢’ + Im ¢".

Note that in case R is a field K our Theorem 1.2 and Corollary 1.3 are close
to the fact proved by Ringel [14, Corollary, p. 408] and asserting that every
hereditary representation-infinite K-algebra A of finite dimension is “WILD” in
the sense defined in [14, p. 408]. In particular, the result of Ringel (14, p. 408]
provides us with a full and faithful embedding functor

K K2>

F: Mod(A) — Mod ( 0 K

for any K-algebra A.

Let us remark that our Theorem 1.2 is more general than the result of Ringel,
because it implies the existence of such an embedding F satisfying in addition the
conditions stated in (i) of Theorem 1.2. Moreover, it guarantees the existence of
a rigid family of functors F satisfying the conditions (i)—(iii) of Theorem 1.2.

The organization of the paper is as follows. In Section 2 we collect basic
definitions and facts on A-families and rigid systems. We mainly follow the
notations and terminology introduced in [9] and [10}.

The proof of Theorem 1.2 is presented at the end of Section 3. It depends on
several preparatory results proved in Section 3; the main ones are Theorem 3.3
and Proposition 3.5.
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Theorem 1.2 is valid for any infinite cardinals \; however, for sake of clarity we
restrict our consideration to regular cardinals. The passage to singular cardinals
does not depend on the particular modules and is given in [9].

An application of Theorem 1.2 is given in Corollary 4.5. Some open problems
are discussed in Section 4.

2. Generalities on A-families and rigid systems

Assume that R is a commutative ring with an identity element and A is a full
subcategory of the category Mod(A), where A is an R-algebra. Throughout we
usually assume that the subcategory A is closed under taking arbitrary direct
sums and under taking extensions in Mod(A).

A sequence 0 - Y’ - X - Y” - 0in A is said to be exact in A if it is an
exact sequence in Mod(A).

We start this section by recalling from [9] and {10] the definitions and basic
facts on A-families.

Let A be an infinite cardinal number and let A be an arbitrary full subcategory
of the category Mod(A), where A is an R-algebra. A A-family in A is the A-
directed system

(2.1) {Us, ugytacvca

in A, that is, Ug is an object in A and ug,: Usg — U, is a A-homomorphism in
A for § C v, such that ugg is the identity map on Ug, and if & C 8 C v then
Ugy = UBy O Uag:

We say that the A-family {Us,ugy}scycr has the R-mono-splitting
property (resp. is R-free) if for all 8 C v C A the homomorphism ug., : Uz —
U, is an R-splittable monomorphism (resp. ug, is injective and the modules Ug,
Uy, Coker ug, are R-free). If in addition the free R-modules Ug, U.,, Coker ug,
are of rank A, the A-family is called A-R-free.

A weak A-family in A is a A-family {Ug, ugy}gcyca in A such that for all
B U~ C X the sequence

0 —=Ugny — Ug®Uy — Ugyy — 0

is exact, where the maps are the natural ones induced by ugny,g, Ugny,v» Ug,8uy
and Uy guy-

If M and N are R-modules, we say that the weak A-family {Ug, ugy}gcyca in
A is rigid for the pair M, N if the following conditions hold:
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(W1) Direct sums of families for various o, C X of the induced homo-
morphism N @ g Uang = N ®r (Ua ® Ug) are semi-stable kernels (see [13]).

(W2) Any A-homomorphism Uy = @gc,(N ®r Up) factors through a finite
direct sum.

(W3) If : Us - N ®g Ug is a A-homomorphism such that the composed
homomorphism Up Zog Ug Y Ne rUg is zero, then ¢ = 0.

(W4) Hom (M &g Up, N ®r Uy) = {glomR(M, ) ii g:],ls infinite,

where the equality means that the canonical R-homomorphism

(2.2) Hompg(M,N) ——> Homp (M ®g Hpg, N Qr H’Y)?

f > f®ugp,, is bijective. If the family is rigid for every pair M, N of R-modules,
we call it a rigid family.

Remarks 2.3: (a) Note that according to the tensor product adjoint formula
the condition (W4) holds for every R-module M if and only if (W4) holds for
M =R.

(b) If we assume that the full subcategory A of Mod(A) is closed under taking
arbitrary direct sums and under taking extensions in Mod(A), then every weak
AM-family {Ug, ugy}scyca in A has the property (W1).

A strong X-family in A is a system {Hpg,hgy,Qi}pcyCricr, Wwhere
{Hp, hgy}scyca is a weak A-family in A, and {Q;}icx is a family of objects
in A together with homomorphisms Hg — €D, g Qi such that, whenever 3 C 7,
there is a commutative diagram

Hy — Hg — D@ — 0

lid lhﬁ‘v l
Hy — Hy — @i, @ — 0

in A with exact rows, where the right-hand vertical map is the natural direct
sum embedding.

It follows that the homomorphism hg, is injective and there is an exact se-
quence

0— Hs 3 H, — @ Qi —0
i€y g

inAforal BCyC A

If M and N are R-modules, we say that the strong A-family
{Hg, hgy, Qi}scychrier in A is strongly rigid for the pair M, N if the fol-
lowing holds:
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(S1) The R-homomorphism idy @ hgy: N ®p Hg — N ®g H,, is injective for
all 8 CH.
(S2) The R-homomorphism

Un,g: N— Homa (Qi, N ®r Qi),

n > (¢ n® q), is bijective for any i € M.

(S3) Homy(M ®gr Hg, N ®r Hy) = {

“w_n

Hompg (M, N) if BCy,
0 if 8Z7,

where the equality means that the canonical R-homomorphism

(2.4) HomR(M,N)—>H0mA(M QR Hﬁ,N@R H’Y)’

f— f ® hg,, is bijective.
If the family {Hg, hgy, Qi}scycaicx is strongly rigid for every pair M, N of
R-modules, we call it a strongly rigid family.

Remark 2.5: According to the tensor product adjoint formula, the condition
(S3) holds for every R-module M if and only if (83) holds for M = R.

Throughout, we assume that R is a commutative ring with an identity element,
A is an R-algebra and A is a full subcategory of the category Mod(A) being closed
under taking arbitrary direct sums and under taking extensions in Mod(A).
The following proposition provides us with a useful reduction tool.

PROPOSITION 2.6: Let A be an infinite cardinal number. Assume that R, A and
A are as above.

(a) For any weak A-family {Ug,ugy}gcycx in the category A there exists a
strong A-family {Hg, hg,Qi}scyca,iex in A which is rigid for every pair of R-
modules M and N for which the weak A-family is rigid.

(b) If the A-family {Ug, ugy}scyca has the R-mono-splitting property (resp. is
A-R-free) then the new family {Hg, kg, Qi}scyCr icx has the R-mono-splitting
property (resp. is A-R-free).

Proof: The statement (a)} follows from [10, Proposition 1]. The statement (b)
follows from the proof of {10, Proposition 1] and the arguments applied in the
proof of [9, Proposition 2.3]. |

Throughout, we denote by w the minimal countable ordinal number. We shall
prove in Section 3 that there exists a rigid w-family of R-free Kronecker modules
with some extra properties. From this we shall derive the existence of large rigid
families of Kronecker modules by applying the so-called Shelah elevator to move
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w-families up to any infinite cardinal A. This is based on a result by Shelah [15],
which can be formulated in terms of R ,-modules.

By an R,-module we shall mean a system F = (F; F (k))kEw, where F is an
R-module and {F¥): k € w} is a countable family of distinguished R-submodules
of F. A morphism ¢: F - G between R,-modules F and G = (G; G®)),¢,, is
an R-homomorphism : F — G such that 9(F*)) C G® for all k € w.

Assume that X is an infinite cardinal number. An R, -module F is said to be
\-R-free if the R-modules F, F®), F/F(k) are free of rank A for any k € w.

A strong A-family {Fg, fzy, Qi}scycaiex of Ro-modules Fg and Q; is said to
be A-R-free if the natural R-module embeddings Fék) C F3 and Qﬁk) C @; split
and their complements are free R-modules of rank X for all 3 C A, i € A and for
all k € w.

In [15] Shelah essentially has proved the important special case R = Z of the
following non-trivial “Shelah elevator”.

THEOREM 2.7: For any infinite cardinal number A there exists a strongly rigid
A-R-free strong A-family {Gg, 98y, Qi}scycr,ien of Ro-modules.

Proof: For the proof the reader is referred to [9] and [6, Section 3] (see also [15]
for the proof in the case R = Z). ]

Definition 2.8: Let A be an infinite cardinal number and let A be an R-algebra.
Following [10], by a A-family of functors from Mod(A) to A we shall mean a
direct system

F = {Fp, fav}acHcA

of R-linear additive functors Fg : Mod(A) — A connected by functorial mor-
phisms fg, : F3 — F,,. The system F is said to be rigid if for any pair of modules
M and N in Mod(A)

Hom(Fp(M),Fy(N)) =0 S Zn,
and the natural R-homomorphism
(2.9) Hom (M, N) —— Homy (Fs(M),F, (N)),

g+ fay(N)oFs(g), is an isomorphism for all 3 C v C A. We say that the system
has the R-mono-splitting property if for any module M in Mod(A) and for
all 8 C 4 C A the R-homomorphism fg,(M): Fg(M) — F., (M) is an R-splittable
monomorphism.
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By applying Proposition 2.6, Theorem 2.7 and a method of Corner [4] the
following important reduction result is proved in [10].

PROPOSITION 2.10: Assume that R is a commutative ring with an identity ele-
ment, A is a full subcategory of the category Mod(A), where A is an R-algebra,
and A is closed under taking arbitrary direct sums and under taking extensions
in Mod(A).

(a) If a weak w-family {Ug,ugy}scycw in A is given, then for any infinite
ordinal number X there exists a strong A-family

{Hp, hpy, Qi}pc~Criex

in A, which is strongly rigid for every pair of R-modules M and N for which the
weak w-family {Ug, ugy}pc~ycw Is strongly rigid.

Moreover, if the given w-family {Ug,ugy}pcyco has the R-mono-splitting
property (resp. is w-R-free), then the new family {Hg, hgy,Qi}pc~chricr has
the R-mono-splitting property (resp. is A-R-free).

(b) For any infinite cardinal number )\, for any R-algebra A generated by A
elements and for any strong A-family {Hpg, hgy, Qi}scyCr,ier in A, there exists a
A-family F = {F3, fay}scyca of R-linear additive functors Fg : Mod(A4) — A,
which is rigid for every pair of A-modules M and N for which the strong A-family
{Hg, hay, Qi}scycr,iexr is strongly rigid.

Moreover, if the given \-family {Hg, hay, Qi}gg,g aiex has the R-mono-
splitting property (resp. is A-R-free), then the new family F = {Fg, fay}acyca
has the R-mono-splitting property (resp. is A-R-free).

3. Rigid families of Kronecker modules

Let R be a commutative ring with an identity element and let A be an R-algebra.
We recall from Section 1 that

A A?
r 2 (A) - < 0 A >
is the Kronecker A-algebra and Mod?7(T'2(4)) is the category of all A-projective
Kronecker modules. Any such module P is identified with the system
(3.1) P=(P,P" ¢,¢"),

where P’ and P” are projective A-modules and ¢’,¢"”: P’ — P” are
A-homomorphisms.
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We will frequently deal with a special kind of R-projective Kronecker module
defined as follows.

Fix an infinite cardinal number A. The Kronecker A-module P will be called
splittable free of rank (), A) if P’ and P” are free A-modules of rank A, the
A-homomorphisms ¢’, " : P’ = P are splittable monomorphisms and the A-
modules P”/Im ¢’ and P”/Im ¢" are free. We denote by

(3.2) SFKr(4,))

the full subcategory of Modh (T'2(A)) formed by splittable free Kronecker
A-modules P = (P, P"; ¢',¢") of rank (A, A) such that P” =Im ¢’ 4+ Im ¢".
The main result of this section is the following.

THEOREM 3.3: Let R be a commutative ring, A an infinite cardinal number and
A an R-algebra which is generated by A elements. Then there exists a direct
system {Hg, hgy}scycx in the category Mod(I's(A)) of Kronecker A-modules
with the following properties:

(a) Each Hp is in the category SFKr(A,)) and each hg, is an A-module
homomorphism.

(b) The family {Hg, hﬂ,y}lgg,yg)\ is A-A-free.

(c) For any pair of A-modules M and N we have

Hom (M, N) if BCn,
0 if BZ~,

where the equality “=" means that the canonical R-homomorphism

Homr,(r)(M ®4 Hg, N ®4 H,) = {

Hompg(M, N) —)Hompz(R)(M ®a Hg,N®a H’Y)’

f— f® hg,, is bijective. In other words {Hp, hgy}scycn is a fully rigid system
in the sense of Corner [5].

The proof is presented at the end of this section. We precede it by two
preparatory important propositions.

By a slight modification of the proof of Proposition 2.3 in (9] we get the
following result reducing the problem about the existence of rigid families to
the existence of weak rigid families.

PROPOSITION 3.4: If there exists a rigid weak A-family of Kronecker R-modules
in the category SFKr(R,\) with the R-mono-splitting property (resp. A-R-
free), then there exists a strongly rigid strong A-family of Kronecker R-modules
in SFKr(R,)\) with the R-mono-splitting property (resp. A-R-free).
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A crucial part of the proof of Theorems 3.3 and 1.2 is the following result which
is a variation of a theorem of Baer (see Fuchs (7, Vol.2]) blended with an idea of
Ringel (see the proof of Theorem 6.9 in [14]).

PropoSITION 3.5: (a) There exist a rigid weak w-family {Fp,ugy}scyCw
Kronecker R-module

Fg = (Fp, Fg; @, 05 : Fg — Fg)

of rank (w,w), and elements eg € Fj satisfying the following conditions:

(1) the module Fg belongs to SFKr(R,w)) for every  C w;

(ii) for all 8 C v C w the homomorphism ug,: Fg — F, is an R-splittable
monomorphism and there is a Kronecker module isomorphism

(3.5a) F,/Imug, = @ R(pi(z))
i€y~ B
where
(3.5b) R(pi(z)) = (R[z]/(pi(z)), Rlz]/(pi(x)), ¥i, ¥7),

1! is the identity map on R[z]/(pi(z)) and ¢} : Rlz]/(p:(z)) — Rlz]/(pi(x)) is
induced by the scalar multiplication by z;
i 1

(iii) F§ = Im ¢p + Im ¢, Im @ ® Reg = Fg, Im ¢ & Reg = Fy
ugy(eg) = e, forall f C v Cw.

and

(b) There exists a strong w-family of splittable R-free Kronecker R-modules of
rank (w,w) (that is, objects in SFKr(R,w)), which is strongly rigid and w-R-free.

Proof: The statement (b) of the proposition follows from (a) and Proposition
3.4. The proof of (a) is divided into four steps.

STEP 1: We define a multiplicative subset S C R[z] and R[z]-submodules Lg,
B C w, of the localization S~!R[z] of R{z] with respect to S with the following
properties:

(al) Lg is an S-torsion-free R[z]-submodule of rank 1 of S~'R[z] for any
B Cw.

(a2) If § C'y C w then Lg C L,.

(a3) If N is an R-module and U~y C w, then

N, if 8=y,

Hompiz)(Lg, N ®r Ly) = { 0, if B\ is infinite,
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where Homp(;)(Lg, N ®r Ly) = N means that the R-homomorphism
lI’N,L: N— HomR[z](Lg, N ®gr L,\,),

n (£ n® L), is bijective.
For this purpose we define inductively the countable set of polynomials

P0,D1,P2,---Pn, - - - € R[z]

by setting po =+ 1 and p;41 = 1+ x - pgp1 - - - pi. Observe that

(1) pi(0) =1forall i €N, and

(ii) the polynomials p;, ¢ € N, are pairwise comaximal, that is, for any ¢ # j
there exist g;,q; € Rlz] with 1 = p;q; + p;g;.

We take for S the multiplicative closure in R[z] of the set {pg,p1,p2,...}. It
follows that $ has no zero divisors in R[z|, and R[z] becomes a subring of the
localization S™!R[z]. As in [9], for any 8 C w we define Lg to be the Rlz]-
submodule

Lg= {———L~————, [ € R[z],all iy, ..., are distinct in ﬁ} 'C S7'R[z]
Pig - - Dis
of S71R[z]. The properties (al) and (a2) easily follow from the definition.
Note also that if ¢ € 3, then p;Lg = R[z] ® Ftli\{z'}’ and if ¢ € w3, then
piLp = piR[z] ® Fj. It follows that in any case p;Lg has a free R-module
complement in Lg and the module N ®g Lg is S-torsion-free for any R-module
N. Then the property (a3) follows by applying the rank 1 considerations as in
Baer’s theorem in Fuchs [7, Vol.2, pp. 110 and 124] (see also [9, Lemma 3.1}).

STEP 2: For any 3 C w we define an R-free Kronecker module
(3.6) Fg = (F3,Fg; ¢, Fg — Fg)

in SFKr(R,w), where Fj; and Fy are R-submodules of Lg defined as follows.
Let d; be the degree of p;. We set

di—1 Z'J di—1 $j
=0t g=0

and if § C w, we define Fj to be the R-submodule

Flli — Z Fi(O) - @ Fi(O)

icB i€p
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of ST'R[z]. Since Fi(o) is the p;-primary component of Fj; and p; # p; for
. F9 and
et

Lg = F3 ® R[z] is an R-module decomposition by the partial fraction argument
based on the property (ii) above (see [9, p. 35]).

Now we define F é’ to be the R-submodule

1 # j, then the primary decomposition theorem yields Fé =P

F§=Fs+Rl C S'Rz]

of S1R{z]. Observe that Fs-z C FY, F/ = F4@® Rl and R1 = F” n Rlz].
B B B B
Finally, we define two R-monomorphisms

V¥ By ——— Fg

where ¢ is the natural embedding Fjy — Fj, and yj is defined by the formula
wg( f) = f =z, that is, <pg is the scalar multiplication by z.

The Kronecker R-modules Fg = (£, Fj; ¢f, ©3), B S w, (3.6) have the
following properties:

(a4) If § C w is infinite, then Fj3 is in SFKr(R,w), and there are R-module
decompositions

(3.7) Fj=F,®RICS'Rlz), Fj=(Im ¢} e R1C SR,
Im @ +Im ¢ = Fj.

(a5) For any 3,7 C w the sequence

OHFﬁny—%FﬁGBF.Y——)FgU.Y——%O

is exact, where the maps are the natural ones induced by %gny g, %sry,v, 18,80y
and uy gu--

The property (a5) follows easily from the definition of the modules Fg and the
maps U g.

Now we shall prove (a4). Since the decomposition Fjj = Fj; @ Rl is obvious it
remains to show that Im ¢ has the R-free complement 1R in Fy.

To see this we consider g € Fi(o)x N 1R. Then there exists a polynomial
f(z) € Rz} such that f(0) =0 and g(z) = f(z)/pi(z). Hence f(z) = g(z)pi(z).
Since 0 = f(0) = ¢(0)p;(0), g € R and p;(0) = 1 by the choice of p; then
g = g(0) = 0. It follows Im @é has a free complement 1R in Fjy. The R-ranks of
the free modules can be computed easily. The remaining equality in (3.7) follows
from the easy observation that R1 C Fé + F, [’,x
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STEP 3: We define the element es € Fj to be the element 1 € Fj. Since
Im 5 = Fp, then (3.7) yields Im ¢} & Reg = Fjj and Im ¢} & Reg = Fy for all
B Cw.

If 3 C v C w, then the embedding Lg C L. induces the B-module embeddings
ulﬁv : Fé C F and ub’,y : Fg C FY such that

(3.8) upy = (ugy, ug,) : Fg —— F,

is an embedding of Kronecker modules in SFKr(R,w).
It follows from the definition that ug,(eg) = ey for all 3 C v C w. Hence we
easily conclude that there is a Kronecker R-module isomorphism

— =14
(3.8a) Fy/imus, = @ F,.0Fr0é i)
USe <]
where F:m = F;’ﬂ- = FO, ¢ ; is the identity map and £, : FO - FO i
induced by the scalar multiplication by z. It is easy to see that for every ¢ there
is a Kronecker R-module isomorphism

— -
(F'y,i’F’y,ﬂ i,,i, i;z) = R(g:(z)).

STeP 4: Now we shall construct a rigid weak w-family {Fp,ugy}gcyco of
Kronecker R-modules in the category SFKr(R,w).

For this purpose choose any infinite subset [y of w such that w~ g is also
infinite. It follows from (a4) that the family Fg, 85 € 4 € w, constructed in
Step 2 is in SFKr(R,w). We take for ug, the Kronecker R-module embeddings
(3.8).

If we relabel w\By by w, then we get an w-family {Fg, ugy}scycw of some of
the original Kronecker R-modules Fg. We shall show that {Fp,ugy}scyco has
the required properties.

By (a4) and (a5), {Fp, ugy}scycw is a weak w-family in SFKr(R,w).

In the proof that {Fp,ugy}scycw has the properties (W1)—(W3) (see
Section 2) we shall apply the following property:

(a8) If f = (f',f"): Fs — N ®pg F, is a homomorphism of Kronecker R-
modules, then there exists an R[z]-homomorphism f”: Ls — N ®g L., such that
the diagram

Y _.L L
B B
lfll lf‘il
idN®u-,

N®@pF/ —— N®grL,
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is commutative, where ug is the natural embedding Fj = Fj; & R1 C Fj & Rlz]
= Lg.
In order to define f” we recall that

f' € Hompg(Fg, N®g F,), f" € Hompg(Fg,N ®r F.)
are such that
(+) (idv ® ¢1)f = ["ghy and (idy ® @)f = "},
We shall identify the Kronecker R-module N ®g F’, with the system
(N QR F,;,,N ®r F';lla ZdN ® (pfvadN ® 90{;)7

where idy ®<piy is the natural embedding and idy ®<pi; is the scalar multiplication
by z.

We define f: Ly — N ®p L., as follows. If £ is an element of Lg and £ =
¢ + h(z), U € Fp, h(z) € R[z], we set
(3.9) fr = (idy ® uy)(£(£)) + [(idy ® ) f" (1)) - h(=).

It is clear that f~” is an R-homomorphism and the diagram above is commutative.
We shall show that f” is an R[z]-homomorphism. For this purpose we note
that f"(m) = (idy ® uy) f"(m) for all m € Fg. Hence, in view of (), we get

£ -2) =1" g8
=(idy ® 3)f'(¢)
=[(idy ® ) f'(€)] -z
=[f"opt)] -z
=)=
for any &' € F. It follows that

(€ ) =(idy ® uy) " (¢ - 2)
=(idn ® uy)(f"(£) - 2)
=[(idn ® uy)f'(¢)] -z
=[f"(¢)] -«
for any ¢’ € F}, and therefore f” is an R[z)-homomorphism.

Now we shall prove that {Fjs,ug,}scyc. has the properties (W1)—(W3) (see
Section 2).



308 R. GOBEL AND D. SIMSON Isr. J. Math.

For (W1) we apply Remark 2.3 (b). 1t follows from the tensor product adjoint
formula that in order to prove the condition (W4) for any pair of R-modules M
and N, it is enough to prove it for M = R and for any N.

Assume that f = (f’, f"): F3 — N ®pg F, is a homomorphism of Kronecker
R-modules. If 8\~ is infinite, then by applying (a3) we get f” = 0; hence f” = 0
and f = 0 as well. Then the bottom equality in (W4) follows.

In order to prove the top equality in (W4) assume that 8 = . It is easy to
see that the following diagram is commutative:

Un,F
N —— HOmr2(R)(Fg,N®R F’Y)
o I

¥y, L
N —— HOmR[z](Lg, N ®gr L‘Y)

where Wy 1, is defined in (a3), ¥y r is defined analogously and, given a homo-
morphism f = (f’, ") : Fg & N ®g F, of Kronecker R-modules, we take for
O(f) the Rlz]-homomorphism f” defined by the formula (3.9).

It is clear that © is an injective R-homomorphism. Since, according to (a3),
the map ¥y 1, is bijective, then ¥y  is bijective and (W4) follows.

In order to prove (W2) assume that g = (¢',9") : Fg = @, cr N ®r Fy is a
homomorphism of Kronecker R-modules, where I is an arbitrary set. It follows
from (a6) that the R-homomorphism ¢” extends to an R[z]-homomorphism g
making the following diagram

F _._i_) L
8 B
l o lg~,,
®'yEI‘ idN®uy

®1€FN®R Fy —_— @761‘N®R L,

commutative. Since Lg is of a “rank-one type” R[z]-module, then the R|[z]-
homomorphism ¢” factors through a finite direct sum 69761“0 N ®pg L., contain-
ing the element f”(1). It follows that ¢” factors through a finite direct sum
@D, er, N ®r F,. Hence (W2) easily follows, because ¢ : Fg — Fy is the
natural embedding.

The property (W3) follows in a similar way by applying the definition of the

Kronecker modules Fjg and the choice of 5.
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Consequently, the w-family {Fj3,ugy}scyco of Kronecker R-modules in the
category SFKr(R,w) is a rigid weak w-family satisfying the required conditions
(1)—(iii).

This finishes the proof of the statement (a) and of the proposition. |

Proof of Theorem 3.3: Let A be an infinite cardinal number and let A be an
R-algebra which is generated by the set {a;}icx. It follows from Theorem 2.7
that there exists a strongly rigid A-R-free strong A-family of R,,-modules.

Let {Gg, 9ay, Qi}scyvcaiex be such a family and let

Gp = {G; G§ beew

for 8 C \. Following Brenner and Butler [3] (see also Corner [4, p. 162]) we shall
modify the family in two steps as follows.

STEP 1: Since any Gg is A-R-free, then we can choose a free basis {g;, gj, i € A}
for Gy. Define

Ai={a®g;i+a,a®g,,ac A} CA®rGp C AQrGp

which is isomorphic to Ap. If A* =3, | A} C AQR Gg, then A* = P, A; =
@, A has A-free complement (P, A®g; = P, Ain A®rGy (hence has A-free
complement in A ®g Gg). Moreover, we have (see [9, p. 39, Lemma 4.1})

(x) {® € Hom(A ®R Gp, A ®r Gg), ®(A") € A"} = A(ida ® gpp)-

STEP 2: We shall modify the given rigid A-family of R,-modules and obtain
another one which we will also denote by {Gg, g, Qi}scyCrier-

First we shift the indices k € w by k — &k + 2 and we derive the R,-modules
Ggs = (Gg; ch))gske‘, for 8 C A. Recall from Section 2 that for any 8 C A there
is an exact sequence

0—Gp — Gg — @Qi—>0.
i€f
Next we add two distinguished M-free submodules G3, G, to G and Q%,Q} to Q;,
respectively, and the resulting new family {Gg, gsy, Qi}scycariex Will be the

desired one. Let G§ = @,y R(9:i +9}), G = Gpand Q) =0, Q} = Q;. It is
easy to check that the new family satisfies the required conditions.
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STEP 3: Now we use the new A-family {Gg, g, Qi}scycr,ien of Ry-modules
and a given rigid w-family of Kronecker R-modules (given in Proposition 3.5)
to produce a A-A-free direct system {Hg, hg,}gcycx of Kronecker A-modules in
SFKr(A,N).

It follows from Proposition 3.5 that there exists a strongly rigid w-R-free
w-family of Kronecker R-modules in SFKr(R,w) satisfying the conditions in
Proposition 3.5.

Let {Fg, fay, @i }BCyCw,icw be such a family, where

Fg = (Fg, Fg; ©f, 05 Fy — Fg).

For k € N we put Fy = Fixy. Then fg, = (f3,, f5,): Fg — F, is an R-splittable
monomorphism for all § C v C w.
Let {Gg,gsy, Qi}scych,icx be the new A-family above and

Gp = (Gﬁ,ch))keu,, where G(ﬁk) C Gg.

We can construct a new family in such a way that the modules ch) C Gpg have
free basis elements chosen like in the proof of Proposition 3.4 of [9, p. 37].
Since Gg is A-R-free, then the map ida ®vgx: AQRr ch) — A®grGp induced
by the natural injection vg x: ch) < (G is injective and A-splittable.
Moreover, the modules A ®p Gf,k), A ®r Gp and the complement of
Im(ids ® vgx) in A ®g Gp are A-free of rank A.
Since frw = (frw, fr,): Fx = F., is an R-splittable monomorphism for any
k € w, then the map

ida ®@uak ® frw: A®r G(ﬁk) ®QrEFy ——— AQrGp®r Fl,

induced by the monomorphisms vgy : ch) — Gg and fi, is injective for any
k € wand any 8 C A

We define the Kronecker A-module A ® g G5 ®gr F,, to be the Kronecker R-
module F,, tensored with the free A-module A ® G of rank A. For any 8 C A
we set

Hg = Z Im(ida ® vgx ®r frw) © A®rGp ®r Fo.
k€w

More explicitly, we have

Hp = (Hj, HY; 95,9 Hy — Hp)
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where
Hp = 3 Im(ida®vsx®r fr,) € A®rGs®rF,
k€Ew
Hg = Y Im(ida®vsx®r fr,) < A®rGsQrF),
kEw

and the homomorphisms tp,¢3 : Hp — Hg are induced by the maps
Yk idA®ch) ® ¢ and Y, idA®ch) ® ¢}, respectively.

For any 8 C v C X we define the map hg,: Hg = H,, to be the restriction of
the map id4 ® ggy ®idr,: AQrRGg®rF, — A®rG,®R F, to the submodule
Hg.

A straightforward analysis shows that Hpg is a Kronecker A-module in
SFKr(A,)) and the family

{Hp, hpy}pcycr

is A-A-free. For this purpose we apply the fact that the modules {Fp}gc., are in
SFKr(R,w) and we have constructed the family {Gg, gs, Qi}scyCh iex in such
a way that the modules ch) C Gp have free basis elements chosen like in the
proof of Proposition 3.4 of [9, p. 37]. Then we can apply the arguments used in
the proof of [9, Lemma 3.3 and Proposition 3.4].

It needs some mapping arguments to show that the direct system
{Hg,hgy}pcyca has the properties (a)-(c) in Theorem 3.3. Fortunately, the
proof given on pp. 40, 41 in [9] remains valid when we replace R,-modules H,,,
v C K, in [9] by the Kronecker modules Fg, 8 C w. Here the equality (*) men-
tioned above applies. This finishes the proof of Theorem 3.3. |

Proof of Theorem 1.2: It follows from Theorem 3.3 that there exists a direct
system {Hpg, hgy}pcyca in the category Mod(I'2(R)) of Kronecker R-modules
satisfying the conditions (a)-(c) stated in Theorem 3.3.

We define a direct system F = {Fg, fgy}scyca of R-linear additive functors

Fg: Mod(A) — Mod(T'y(R))
connected by injective functorial morphisms fg, : Fg — F, by setting
]Fg(M) =M®a Hﬁ and fﬁ,y(M) =idpy ® hg.y

for any right A-module M. Since hgy : Hg = H, is an A-splittable monomor-
phism, then the I's(R)-homomorphism fgy(M) : Fg(M) — F,(M) is an R-
splittable monomorphism. The remaining properties of the family F required in
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Theorem 1.2 follow from the properties (a)—(c) stated in Theorem 3.3. The proof
is complete. | |

4. Open problems

In connection with the solution of the endomorphism ring problem given in Corol-
lary 1.3, the following problem arises.

PROBLEM 4.1: Prove that if K is a commutative field, then every K-algebra is
isomorphic to an endomorphism algebra End X of a torsion-free module X over
the polynomial K-algebra K|[t].

In connection with representation embedding problems studied in [17] the
following open problems are stated in [18].

PROBLEM (%1): Find finite dimensional K-algebras A (resp. bipartite finite di-
mensional K -algebras S of the form

_ (A aMp
=(5 %)
where 4 Mg is an A-B-bimodule) for which the category mod(A) (resp. the cate-

gory prin(R)4 of prinjective modules [16, Section 17.9])) is of infinite
representation type if and only if there exists a full faithful exact functor

T: mod(I') — mod(A) resp. T: mod(I') — prin(R)%),

where T is a finite dimensional K-algebra of the form

(4.2) Ay = (‘; FgG> ,

F, G are division K-algebras and pNg is an F-G-bimodule such that
(dim pN) - (dim Ng) = 4.
PROBLEM (4;7): Find finite dimensional K-algebras A (resp. bipartite algebras

(A aMsp
S of the form S = 0 B

is of infinite representation type if and only if there exists a
representation embedding functor modsy(I') — mod(A) (resp. mods,(I') —
prin(S)4), where T' is a finite dimensional K-algebra of the form Ay as in
Problem (41), and modgp(T) is the full subcategory of mod(I') consisting of
modules having the socle projective.

)) for which the category mod(A) (resp. prin(S)4)

Note that the characterization of minimal representation-infinite loop-finite
artin algebras given by Skowronski in [21, Theorem 4.1} yields
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THEOREM 4.3: Suppose that K is a field and A is a finite dimensional K -algebra
which is loop-finite in the sense of [20], that is, the infinite radical rad® (X, X)
is zero for any indecomposable module X in mod(A). The A is of infinite rep-
resentation type if and only if there exist division K-algebras F' and G, an F-
G-bimodule pNg such that (dim pN) - (dim Ng) = 4 and a full faithful exact
functor mod{Ay)} — mod(A), where Ay is a finite dimensional K-algebra of
the form (4.2)

The proof of Theorem 4.3 essentially depends on the results of Skowroniski in
[21, Theorem 4.1} and in [22, pp. 651-652] (see [12]).

In connection with Theorem 4.3 and the main result of the present paper, the
following problem arises.

PROBLEM 4.4: Prove that if K is a commutative field, R is a commutative
K-algebra and A is a representation-infinite loop-finite and finite dimensional
K-algebra, then for any R-algebra A generated by at most A\ elements, where A
is an infinite cardinal number, there exists a direct system

F = {Fg,upy}scycnr

of R-linear additive functors Fg: Mod(A) — Mod(R®x A) connected by func-
torial morphisms ug,: Fg — F., satisfying the conditions analogous to (i)-(iii)
stated in Theorem 1.2.

In view of Theorem 4.3, Problem 4.4 reduces to algebras A of the form Ay
(4.1), where F, G are finite dimensional division K-algebras and pN¢ is a finite
dimensional F-G-bimodule such that (dim pN) - (dim Ng) = 4.

COROLLARY 4.5: If K is an algebraically closed field, then Problem 4.4 has a
positive solution.

Proof: By the remark above, without loss of generality we can suppose that
A = Ay, where rNg is a bimodule satisfying the conditions above. Since K
is algebraically closed, then F & G = K and there is a bimodule isomorphism
rFNg = g Kg along the ring isomorphisms F & K and G = K. Consequently,
the algebra Ay is isomorphic to the Kronecker K-algebra I';(K) (see (1.1)) and
therefore there are ring isomorphisms R ®x A & R ®x Ay = I's(R). Then,
according to Theorem 1.2 the corollary follows. |
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